Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Advanced Origami: Nanostructures From Flowers to Boxes

Scanning electron microscopic (SEM) images: a) Self-rolling strips of different widths; b) metallic microflower; c) trapped microparticles of lactose in self-organized metallic structures (scale bar is 4 μm).
Scanning electron microscopic (SEM) images: a) Self-rolling strips of different widths; b) metallic microflower; c) trapped microparticles of lactose in self-organized metallic structures (scale bar is 4 μm).

Abstract:
Self-organising complex 3D structures on the nanometer scale hold tremendous promise in wide-ranging nanotechnological devices with important optical and biological applications. One of the key challenges facing researchers, however, lies in developing a fabrication process with extremely high precision, control, and reproducibility.

Advanced Origami: Nanostructures From Flowers to Boxes

Germany | Posted on October 11th, 2012

A team from the Aalto University in Finland in collaboration with the University of Washington has made an important breakthrough utilising a phenomena that can be commonly observed outside the laboratory in the natural world, from the curling of flowers to the opening of seed capsules in ice plants: deformation through stress-relaxation. As reported in Advanced Materials, the researchers (K. Chalapat, N. Chekurov, H. Jiang, J. Li, B. Parviz and G. S. Paraoanu) from Aalto University have demonstrated how two different techniques, namely, reactive ion etching and focused ion beam, can be used to induce stress at defined locations on very nanometer-sized polycrystalline metal films, ultimately enabling them to manipulate the films into the desired complex 3D geometries.

Reactive ion etching, a technique commonly used for cleaning silicon wafers, involves exposure to a low-pressure plasma, in which high-energy ions collide and react with the substrate. When this technique is applied to thin strips of metal film on silicon wafer, this results in the insertion of adatoms into grain boundaries within the metal matrix. This induces a compressive stress, which, upon relaxing of the film, causes it to bend (see the figure to the left and the video at the bottom of the page). Interestingly, the extent of bending (radius of curvature) was found to be dependent on the width of the metal, thus permitting control over the final 3D geometry. Exploiting this concept, the team demonstrated a functional microscopic metallic flower-like structure (see below), with the capacity to trap microparticles (as a proof-of-concept, lactose particle were employed).

Using the more well-known process for fabricating defined nanometer-sized structures, focused ion beam (FIB), which involves bombarding the substrate with a beam of gallium ions, the researchers found that nanometallic cantilevers bent strongly toward the incident direction of the ion beam, effectively due to the compressive stress that results from atomic displacement. Moreover, a theoretical treatment showed that for a given material, the amount of bending is exclusively determined by the fluence of beam, meaning that by controlling the strength of the ion source, one can manipulate materials on the nanometer scale with extremely high precision and control. A remarkable example of this in practice is the fabrication of a nanobox (see video).The remarkable precision and control afforded by the novel methods reported here represents an important nanoengineering advance with far-reaching and exciting future applications.

####

For more information, please click here

Copyright © Wiley-VCH Materials Science Journals

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Link to the original paper on Wiley Online Library:

Related News Press

News and information

New nano approach could cut dose of leading HIV treatment in half February 24th, 2017

Atom-scale oxidation mechanism of nanoparticles helps develop anti-corrosion materials February 24th, 2017

Atomic force imaging used to study nematodes: KFU bionanotechnology lab (head - Dr. Rawil Fakhrullin) has obtained 3-D images of nematodes' cuticles February 23rd, 2017

Particle Works creates range of high performance quantum dots February 23rd, 2017

Videos/Movies

Graphene foam gets big and tough: Rice University's nanotube-reinforced material can be shaped, is highly conductive February 13th, 2017

First ever blueprint unveiled to construct a large scale quantum computer February 3rd, 2017

The shape of melting in two dimensions: University of Michigan team uses Titan to explore fundamental phase transitions February 2nd, 2017

Metallic hydrogen, once theory, becomes reality: Harvard physicists succeed in creating 'the holy grail of high-pressure physics' January 28th, 2017

Possible Futures

New nano approach could cut dose of leading HIV treatment in half February 24th, 2017

Atom-scale oxidation mechanism of nanoparticles helps develop anti-corrosion materials February 24th, 2017

EmTech Asia breaks new barriers with potential applications of space exploration with NASA and MIT February 22nd, 2017

Tiny nanoclusters could solve big problems for lithium-ion batteries February 21st, 2017

Self Assembly

Molecular phenomenon discovered by advanced NMR facility: Cutting edge technology has shown a molecule self-assembling into different forms when passing between solution state to solid state, and back again - a curious phenomenon in science - says research by the University of Wa February 22nd, 2017

In-cell molecular sieve from protein crystal February 14th, 2017

Synthetic nanoparticles achieve the complexity of protein molecules: Study published in Science reveals the structure of the largest gold nanoparticles to-date and the self-assembly mechanisms behind their formation January 25th, 2017

Self-assembling particles brighten future of LED lighting January 18th, 2017

Discoveries

New nano approach could cut dose of leading HIV treatment in half February 24th, 2017

Atom-scale oxidation mechanism of nanoparticles helps develop anti-corrosion materials February 24th, 2017

Atomic force imaging used to study nematodes: KFU bionanotechnology lab (head - Dr. Rawil Fakhrullin) has obtained 3-D images of nematodes' cuticles February 23rd, 2017

Molecular phenomenon discovered by advanced NMR facility: Cutting edge technology has shown a molecule self-assembling into different forms when passing between solution state to solid state, and back again - a curious phenomenon in science - says research by the University of Wa February 22nd, 2017

Announcements

New nano approach could cut dose of leading HIV treatment in half February 24th, 2017

Atom-scale oxidation mechanism of nanoparticles helps develop anti-corrosion materials February 24th, 2017

Atomic force imaging used to study nematodes: KFU bionanotechnology lab (head - Dr. Rawil Fakhrullin) has obtained 3-D images of nematodes' cuticles February 23rd, 2017

Particle Works creates range of high performance quantum dots February 23rd, 2017

Research partnerships

Molecular phenomenon discovered by advanced NMR facility: Cutting edge technology has shown a molecule self-assembling into different forms when passing between solution state to solid state, and back again - a curious phenomenon in science - says research by the University of Wa February 22nd, 2017

Graphene foam gets big and tough: Rice University's nanotube-reinforced material can be shaped, is highly conductive February 13th, 2017

Cedars-Sinai, UCLA Scientists Use New ‘Blood Biopsies’ With Experimental Device to Speed Cancer Diagnosis and Predict Disease Spread: Leading-Edge Research Is Part of National Cancer Moonshot Initiative February 13th, 2017

Highly sensitive gas sensors for volatile organic compound detection February 6th, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project