Nanotechnology Now

Our NanoNews Digest Sponsors



Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > Advanced Origami: Nanostructures From Flowers to Boxes

Scanning electron microscopic (SEM) images: a) Self-rolling strips of different widths; b) metallic microflower; c) trapped microparticles of lactose in self-organized metallic structures (scale bar is 4 μm).
Scanning electron microscopic (SEM) images: a) Self-rolling strips of different widths; b) metallic microflower; c) trapped microparticles of lactose in self-organized metallic structures (scale bar is 4 μm).

Abstract:
Self-organising complex 3D structures on the nanometer scale hold tremendous promise in wide-ranging nanotechnological devices with important optical and biological applications. One of the key challenges facing researchers, however, lies in developing a fabrication process with extremely high precision, control, and reproducibility.

Advanced Origami: Nanostructures From Flowers to Boxes

Germany | Posted on October 11th, 2012

A team from the Aalto University in Finland in collaboration with the University of Washington has made an important breakthrough utilising a phenomena that can be commonly observed outside the laboratory in the natural world, from the curling of flowers to the opening of seed capsules in ice plants: deformation through stress-relaxation. As reported in Advanced Materials, the researchers (K. Chalapat, N. Chekurov, H. Jiang, J. Li, B. Parviz and G. S. Paraoanu) from Aalto University have demonstrated how two different techniques, namely, reactive ion etching and focused ion beam, can be used to induce stress at defined locations on very nanometer-sized polycrystalline metal films, ultimately enabling them to manipulate the films into the desired complex 3D geometries.

Reactive ion etching, a technique commonly used for cleaning silicon wafers, involves exposure to a low-pressure plasma, in which high-energy ions collide and react with the substrate. When this technique is applied to thin strips of metal film on silicon wafer, this results in the insertion of adatoms into grain boundaries within the metal matrix. This induces a compressive stress, which, upon relaxing of the film, causes it to bend (see the figure to the left and the video at the bottom of the page). Interestingly, the extent of bending (radius of curvature) was found to be dependent on the width of the metal, thus permitting control over the final 3D geometry. Exploiting this concept, the team demonstrated a functional microscopic metallic flower-like structure (see below), with the capacity to trap microparticles (as a proof-of-concept, lactose particle were employed).

Using the more well-known process for fabricating defined nanometer-sized structures, focused ion beam (FIB), which involves bombarding the substrate with a beam of gallium ions, the researchers found that nanometallic cantilevers bent strongly toward the incident direction of the ion beam, effectively due to the compressive stress that results from atomic displacement. Moreover, a theoretical treatment showed that for a given material, the amount of bending is exclusively determined by the fluence of beam, meaning that by controlling the strength of the ion source, one can manipulate materials on the nanometer scale with extremely high precision and control. A remarkable example of this in practice is the fabrication of a nanobox (see video).The remarkable precision and control afforded by the novel methods reported here represents an important nanoengineering advance with far-reaching and exciting future applications.

####

For more information, please click here

Copyright © Wiley-VCH Materials Science Journals

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Link to the original paper on Wiley Online Library:

Related News Press

News and information

Renishaw receives Queen's Award for spectroscopy developments November 25th, 2014

JPK reports on the use of AFM and the CellHesion module to study plant cells at the University of Queensland November 25th, 2014

Vegetable oil ingredient key to destroying gastric disease bacteria: In mice, therapeutic nanoparticles dampen H. pylori bacteria and inflammation that lead to ulcers and gastric cancer November 25th, 2014

Research yields material made of single-atom layers that snap together like Legos November 25th, 2014

Videos/Movies

Purdue 3-D printing innovation capable of making stronger, lighter metal works for auto, aerospace industries November 20th, 2014

New way to move atomically thin semiconductors for use in flexible devices November 13th, 2014

A billion holes can make a battery November 10th, 2014

Manipulating complex molecules by hand: New method in scanning probe microscopy: Jülich researchers create a word using 47 molecules November 6th, 2014

Possible Futures

A novel method for identifying the body’s ‘noisiest’ networks November 19th, 2014

Researchers discern the shapes of high-order Brownian motions November 17th, 2014

VDMA Electronics Production Equipment: Growth track for 2014 and 2015 confirmed: Business climate survey shows robust industry sector November 14th, 2014

Open Materials Development Will Be Key for HP's Success in 3D Printing: HP can make a big splash in 3D printing, but it needs to shore up technology claims and avoid the temptation of the razor/razor blade business model in order to flourish November 11th, 2014

Self Assembly

Live Images from the Nano-cosmos: Researchers watch layers of football molecules grow November 5th, 2014

Outsmarting Thermodynamics in Self-assembly of Nanostructures: Berkeley Lab reports method for symmetry-breaking in feedback-driven self-assembly of optical metamaterials November 4th, 2014

NYU Researchers Break Nano Barrier to Engineer the First Protein Microfiber October 23rd, 2014

NIST offers electronics industry 2 ways to snoop on self-organizing molecules October 22nd, 2014

Discoveries

Lawrence Livermore researchers develop efficient method to produce nanoporous metals November 25th, 2014

Vegetable oil ingredient key to destroying gastric disease bacteria: In mice, therapeutic nanoparticles dampen H. pylori bacteria and inflammation that lead to ulcers and gastric cancer November 25th, 2014

Research yields material made of single-atom layers that snap together like Legos November 25th, 2014

Blu-ray disc can be used to improve solar cell performance: Data storage pattern transferred to solar cell increases light absorption November 25th, 2014

Announcements

Renishaw receives Queen's Award for spectroscopy developments November 25th, 2014

JPK reports on the use of AFM and the CellHesion module to study plant cells at the University of Queensland November 25th, 2014

Vegetable oil ingredient key to destroying gastric disease bacteria: In mice, therapeutic nanoparticles dampen H. pylori bacteria and inflammation that lead to ulcers and gastric cancer November 25th, 2014

Research yields material made of single-atom layers that snap together like Legos November 25th, 2014

Research partnerships

Lawrence Livermore researchers develop efficient method to produce nanoporous metals November 25th, 2014

Vegetable oil ingredient key to destroying gastric disease bacteria: In mice, therapeutic nanoparticles dampen H. pylori bacteria and inflammation that lead to ulcers and gastric cancer November 25th, 2014

Characterization of X-ray flashes open new perspectives in X-ray science: Ultra-short X-ray pulses explore the nano world November 24th, 2014

Research reveals how our bodies keep unwelcome visitors out of cell nuclei November 24th, 2014

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More












ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE