Nanotechnology Now







Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Queen's develops new environmentally friendly MOF production method

Abstract:
Chemists at Queen's University Belfast have devised a novel, environmentally friendly technique, which allows the rapid production of Metal-Organic Frameworks porous materials (MOFs).

Queen's develops new environmentally friendly MOF production method

Belfast, UK | Posted on October 11th, 2012

These revolutionary nanomaterials have the potential to transform hazardous gas storage, natural gas vehicles and drug delivery and have the highest surface-area of any known substance.

A sugar-lump sized piece of MOF material can have the same surface area as a football pitch.

Until now MOF manufacturing techniques have been limited as they are costly, slow and require large quantities of solvents, which can be toxic and harmful to the environment.

Now, Professor Stuart James in Queen's School of Chemistry and Chemical Engineering has patented a novel technique for the synthesis of MOFs, allowing affordable, large-scale deployment of these ground-breaking materials for the first time.

Professor James said: "Because of their extremely large surface-areas and the flexibility with which their properties can be varied, MOFs can be used as sponges, to soak up and store gases, or as filters to separate and capture specific gases and chemicals. For example, they can be used to greatly increase the storage capacity of gas tanks.

"Now, for the first time, our patented technology allows the synthesis of MOFs without using any solvents, even water, and on greatly reduced timescales, by making use of mechanochemistry.

"By simply grinding together two cheap precursors in a basic milling machine, the MOF material is produced in a matter of minutes, in a powder form, ready for applications without further treatment, and without generating solvent waste."

Granting of the patent has enabled the formation of a new company called MOF Technologies from Queen's spin-out arm QUBIS. Seed funding has been provided by both QUBIS and NetScientific, which specialises in commercialising technologies developed within university laboratories.

CEO of MOF Technologies, Tom Robinson added: "The potential for this technology is huge. Industry has known for some time about the incredible properties of MOFs and hundreds of millions of dollars are being spent on their development in research labs around the world. We can now manufacture these materials in a scalable and environmentally-friendly way, unlocking their potential to transform the transport, gas storage and medical industries in the years to come."

One of the first areas expected to benefit from the technology is the production of natural gas vehicles (NGVs).

Becoming increasingly popular due to a number of key advantages over conventional, gasoline-fueled vehicles (natural gas is currently half the price of petrol per mile travelled), NGVs still have issues around storage and refueling. Typically, natural gas is stored at very high pressures - up to 300 atmospheres - meaning heavy, cylindrical steel storage tanks are required. These must be filled at special refueling stations using large, expensive and power-hungry compressors.

Explaining how MOFs can provide a solution to this issue, Professor James said: "By enabling higher storage capacities at much lower pressures, storage tanks don't need to be as strong, so they can be much lighter and may even be shaped to fit the free space available. The lower storage pressure also means that new, costly refueling infrastructure such as specialized filling stations is no longer required and opens up the possibility of refueling vehicles in the home, from domestic gas supplies. The same gas supplies that power our central heating and gas ovens."

MOF Technologies is also hoping to exploit opportunities in global carbon capture, hazardous gas storage, natural gas processing and hydrocarbon separations.

Frank Bryan, interim CEO of QUBIS added: "QUBIS was delighted to partner with NetScientific in the creation of our latest Queen's University spin-out. QUBIS exists to support acclaimed Queen's academics, like Professor James, in commercialising their cutting edge research and we are confident this will be the latest in a long line of successes."

Further information on the technology is available online at www.moftechnologies.com and further information on QUBIS is available online at www.qubis.co.uk/

####

For more information, please click here

Contacts:
Communications Office

44-028-909-75384

Copyright © Queen's University Belfast

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Leti to Offer Updates on Silicon Photonics Successes at OFC in LA February 27th, 2015

Moving molecule writes letters: Caging of molecules allows investigation of equilibrium thermodynamics February 27th, 2015

Untangling DNA with a droplet of water, a pipet and a polymer: With the 'rolling droplet technique,' a DNA-injected water droplet rolls like a ball over a platelet, sticking the DNA to the plate surface February 27th, 2015

Maximum Precision in 3D Printing: New complete solution makes additive manufacturing standard for microfabrication February 26th, 2015

Chemistry

Chromium-Centered Cycloparaphenylene Rings as New Tools for Making Functionalized Nanocarbons February 24th, 2015

Stretch and relax! -- Losing 1 electron switches magnetism on in dichromium February 23rd, 2015

A straightforward, rapid and continuous method to protect MOF nanocrystals against water February 9th, 2015

Research shows benefits of silicon carbide for sensors in harsh environments: Advantages identified across industries February 9th, 2015

Nanomedicine

Untangling DNA with a droplet of water, a pipet and a polymer: With the 'rolling droplet technique,' a DNA-injected water droplet rolls like a ball over a platelet, sticking the DNA to the plate surface February 27th, 2015

Graphene shows potential as novel anti-cancer therapeutic strategy: University of Manchester scientists have used graphene to target and neutralise cancer stem cells while not harming other cells February 26th, 2015

Cutting-edge technology optimizes cancer therapy with nanomedicine drug combinations: UCLA bioengineers develop platform that offers personalized approach to treatment February 24th, 2015

Optical nanoantennas set the stage for a NEMS lab-on-a-chip revolution February 24th, 2015

Discoveries

Leti to Offer Updates on Silicon Photonics Successes at OFC in LA February 27th, 2015

Moving molecule writes letters: Caging of molecules allows investigation of equilibrium thermodynamics February 27th, 2015

Untangling DNA with a droplet of water, a pipet and a polymer: With the 'rolling droplet technique,' a DNA-injected water droplet rolls like a ball over a platelet, sticking the DNA to the plate surface February 27th, 2015

Graphene shows potential as novel anti-cancer therapeutic strategy: University of Manchester scientists have used graphene to target and neutralise cancer stem cells while not harming other cells February 26th, 2015

Materials/Metamaterials

Moving molecule writes letters: Caging of molecules allows investigation of equilibrium thermodynamics February 27th, 2015

Graphene shows potential as novel anti-cancer therapeutic strategy: University of Manchester scientists have used graphene to target and neutralise cancer stem cells while not harming other cells February 26th, 2015

In quest for better lithium-air batteries, chemists boost carbon's stability: Nanoparticle coatings improve stability, cyclability of '3DOm' carbon February 25th, 2015

Learning by eye: Silicon micro-funnels increase the efficiency of solar cells February 25th, 2015

Announcements

Leti to Offer Updates on Silicon Photonics Successes at OFC in LA February 27th, 2015

Moving molecule writes letters: Caging of molecules allows investigation of equilibrium thermodynamics February 27th, 2015

Untangling DNA with a droplet of water, a pipet and a polymer: With the 'rolling droplet technique,' a DNA-injected water droplet rolls like a ball over a platelet, sticking the DNA to the plate surface February 27th, 2015

Graphene shows potential as novel anti-cancer therapeutic strategy: University of Manchester scientists have used graphene to target and neutralise cancer stem cells while not harming other cells February 26th, 2015

Environment

Simple, Cost-Efficient Method Used to Determine Toxicants Growing in Pistachio February 26th, 2015

Purification of Industrial Wastewater Using Visible-Light Sensitive Photocatalysts February 24th, 2015

Nanocomposite Membranes Used in Iran for Water Desalination, Sweetening February 16th, 2015

Scientists in Iran Use Nanotechnology for Industrial Purification of Drinking Water February 13th, 2015

Energy

In quest for better lithium-air batteries, chemists boost carbon's stability: Nanoparticle coatings improve stability, cyclability of '3DOm' carbon February 25th, 2015

New nanowire structure absorbs light efficiently: Dual-type nanowire arrays can be used in applications such as LEDs and solar cells February 25th, 2015

Learning by eye: Silicon micro-funnels increase the efficiency of solar cells February 25th, 2015

Magnetic nanoparticles enhance performance of solar cells X-ray study points the way to higher energy yields February 25th, 2015

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2015 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE