Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Queen's develops new environmentally friendly MOF production method

Abstract:
Chemists at Queen's University Belfast have devised a novel, environmentally friendly technique, which allows the rapid production of Metal-Organic Frameworks porous materials (MOFs).

Queen's develops new environmentally friendly MOF production method

Belfast, UK | Posted on October 11th, 2012

These revolutionary nanomaterials have the potential to transform hazardous gas storage, natural gas vehicles and drug delivery and have the highest surface-area of any known substance.

A sugar-lump sized piece of MOF material can have the same surface area as a football pitch.

Until now MOF manufacturing techniques have been limited as they are costly, slow and require large quantities of solvents, which can be toxic and harmful to the environment.

Now, Professor Stuart James in Queen's School of Chemistry and Chemical Engineering has patented a novel technique for the synthesis of MOFs, allowing affordable, large-scale deployment of these ground-breaking materials for the first time.

Professor James said: "Because of their extremely large surface-areas and the flexibility with which their properties can be varied, MOFs can be used as sponges, to soak up and store gases, or as filters to separate and capture specific gases and chemicals. For example, they can be used to greatly increase the storage capacity of gas tanks.

"Now, for the first time, our patented technology allows the synthesis of MOFs without using any solvents, even water, and on greatly reduced timescales, by making use of mechanochemistry.

"By simply grinding together two cheap precursors in a basic milling machine, the MOF material is produced in a matter of minutes, in a powder form, ready for applications without further treatment, and without generating solvent waste."

Granting of the patent has enabled the formation of a new company called MOF Technologies from Queen's spin-out arm QUBIS. Seed funding has been provided by both QUBIS and NetScientific, which specialises in commercialising technologies developed within university laboratories.

CEO of MOF Technologies, Tom Robinson added: "The potential for this technology is huge. Industry has known for some time about the incredible properties of MOFs and hundreds of millions of dollars are being spent on their development in research labs around the world. We can now manufacture these materials in a scalable and environmentally-friendly way, unlocking their potential to transform the transport, gas storage and medical industries in the years to come."

One of the first areas expected to benefit from the technology is the production of natural gas vehicles (NGVs).

Becoming increasingly popular due to a number of key advantages over conventional, gasoline-fueled vehicles (natural gas is currently half the price of petrol per mile travelled), NGVs still have issues around storage and refueling. Typically, natural gas is stored at very high pressures - up to 300 atmospheres - meaning heavy, cylindrical steel storage tanks are required. These must be filled at special refueling stations using large, expensive and power-hungry compressors.

Explaining how MOFs can provide a solution to this issue, Professor James said: "By enabling higher storage capacities at much lower pressures, storage tanks don't need to be as strong, so they can be much lighter and may even be shaped to fit the free space available. The lower storage pressure also means that new, costly refueling infrastructure such as specialized filling stations is no longer required and opens up the possibility of refueling vehicles in the home, from domestic gas supplies. The same gas supplies that power our central heating and gas ovens."

MOF Technologies is also hoping to exploit opportunities in global carbon capture, hazardous gas storage, natural gas processing and hydrocarbon separations.

Frank Bryan, interim CEO of QUBIS added: "QUBIS was delighted to partner with NetScientific in the creation of our latest Queen's University spin-out. QUBIS exists to support acclaimed Queen's academics, like Professor James, in commercialising their cutting edge research and we are confident this will be the latest in a long line of successes."

Further information on the technology is available online at www.moftechnologies.com and further information on QUBIS is available online at www.qubis.co.uk/

####

For more information, please click here

Contacts:
Communications Office

44-028-909-75384

Copyright © Queen's University Belfast

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Princeton-UPenn research team finds physics treasure hidden in a wallpaper pattern July 21st, 2018

World's fastest man-made spinning object could help study quantum mechanics July 20th, 2018

Relax, just break it July 20th, 2018

Future electronic components to be printed like newspapers July 20th, 2018

Chemistry

Sirrus's Issued Patent Portfolio Continues To Accelerate July 18th, 2018

Barium ruthenate: A high-yield, easy-to-handle perovskite catalyst for the oxidation of sulfides July 13th, 2018

The Institute of Applied Physics at the University of Tsukuba near Tokyo in Japan uses Deben's ARM2 detector to better understand catalytic reaction mechanisms June 27th, 2018

Quantum Interference May Be Key to Smaller Insulators: Breakthrough could jumpstart further miniaturization of transistors June 6th, 2018

Nanomedicine

Nano-kirigami: 'Paper-cut' provides model for 3D intelligent nanofabrication July 13th, 2018

UMBC researchers develop nanoparticles to reduce internal bleeding caused by blast trauma July 13th, 2018

Researchers identify cost-cutting option in treating nail fungus with nanotechnology: GW researcher Adam Friedman, M.D., studied the potential use of nitric oxide-releasing nanoparticles to improve onychomycosis treatment July 11th, 2018

New sensor technology enables super-sensitive live monitoring of human biomolecules July 3rd, 2018

Discoveries

World's fastest man-made spinning object could help study quantum mechanics July 20th, 2018

Relax, just break it July 20th, 2018

Future electronic components to be printed like newspapers July 20th, 2018

The relationship between charge density waves and superconductivity? It's complicated July 19th, 2018

Materials/Metamaterials

Relax, just break it July 20th, 2018

In borophene, boundaries are no barrier: Rice U., Northwestern researchers make and test atom-thick boron's unique domains July 17th, 2018

Barium ruthenate: A high-yield, easy-to-handle perovskite catalyst for the oxidation of sulfides July 13th, 2018

Carbon is the new black: Researchers use carbon nanotubes to develop clothing that can double as batteries July 10th, 2018

Announcements

Princeton-UPenn research team finds physics treasure hidden in a wallpaper pattern July 21st, 2018

World's fastest man-made spinning object could help study quantum mechanics July 20th, 2018

Relax, just break it July 20th, 2018

Future electronic components to be printed like newspapers July 20th, 2018

Environment

FEFU scientists reported on toxicity of carbon and silicon nanotubes and carbon nanofibers: Nanoparticles with a wide range of applying, including medicine, damage cells of microalgae Heterosigma akashivo badly. July 18th, 2018

Nanomaterials could mean more algae outbreaks for wetlands, waterways: High tech metal particles may inadvertently take a toll on aquatic life June 26th, 2018

Squeezing light at the nanoscale: Ultra-confined light could detect harmful molecules June 17th, 2018

A nanotech sensor that turns molecular fingerprints into bar codes June 7th, 2018

Energy

NIST Researchers Simulate Simple Logic for Nanofluidic Computing June 30th, 2018

Northwestern researchers achieve unprecedented control of polymer grids: Materials could find applications in water purification, solar energy storage, body armor June 22nd, 2018

Physicists devise method to reveal how light affects materials: The new method adds to the understanding of the fundamental laws governing the interaction of electrons and light June 15th, 2018

Tripling the Energy Storage of Lithium-Ion Batteries: Scientists have synthesized a new cathode material from iron fluoride that surpasses the capacity limits of traditional lithium-ion batteries June 14th, 2018

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project