Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > Queen's develops new environmentally friendly MOF production method

Abstract:
Chemists at Queen's University Belfast have devised a novel, environmentally friendly technique, which allows the rapid production of Metal-Organic Frameworks porous materials (MOFs).

Queen's develops new environmentally friendly MOF production method

Belfast, UK | Posted on October 11th, 2012

These revolutionary nanomaterials have the potential to transform hazardous gas storage, natural gas vehicles and drug delivery and have the highest surface-area of any known substance.

A sugar-lump sized piece of MOF material can have the same surface area as a football pitch.

Until now MOF manufacturing techniques have been limited as they are costly, slow and require large quantities of solvents, which can be toxic and harmful to the environment.

Now, Professor Stuart James in Queen's School of Chemistry and Chemical Engineering has patented a novel technique for the synthesis of MOFs, allowing affordable, large-scale deployment of these ground-breaking materials for the first time.

Professor James said: "Because of their extremely large surface-areas and the flexibility with which their properties can be varied, MOFs can be used as sponges, to soak up and store gases, or as filters to separate and capture specific gases and chemicals. For example, they can be used to greatly increase the storage capacity of gas tanks.

"Now, for the first time, our patented technology allows the synthesis of MOFs without using any solvents, even water, and on greatly reduced timescales, by making use of mechanochemistry.

"By simply grinding together two cheap precursors in a basic milling machine, the MOF material is produced in a matter of minutes, in a powder form, ready for applications without further treatment, and without generating solvent waste."

Granting of the patent has enabled the formation of a new company called MOF Technologies from Queen's spin-out arm QUBIS. Seed funding has been provided by both QUBIS and NetScientific, which specialises in commercialising technologies developed within university laboratories.

CEO of MOF Technologies, Tom Robinson added: "The potential for this technology is huge. Industry has known for some time about the incredible properties of MOFs and hundreds of millions of dollars are being spent on their development in research labs around the world. We can now manufacture these materials in a scalable and environmentally-friendly way, unlocking their potential to transform the transport, gas storage and medical industries in the years to come."

One of the first areas expected to benefit from the technology is the production of natural gas vehicles (NGVs).

Becoming increasingly popular due to a number of key advantages over conventional, gasoline-fueled vehicles (natural gas is currently half the price of petrol per mile travelled), NGVs still have issues around storage and refueling. Typically, natural gas is stored at very high pressures - up to 300 atmospheres - meaning heavy, cylindrical steel storage tanks are required. These must be filled at special refueling stations using large, expensive and power-hungry compressors.

Explaining how MOFs can provide a solution to this issue, Professor James said: "By enabling higher storage capacities at much lower pressures, storage tanks don't need to be as strong, so they can be much lighter and may even be shaped to fit the free space available. The lower storage pressure also means that new, costly refueling infrastructure such as specialized filling stations is no longer required and opens up the possibility of refueling vehicles in the home, from domestic gas supplies. The same gas supplies that power our central heating and gas ovens."

MOF Technologies is also hoping to exploit opportunities in global carbon capture, hazardous gas storage, natural gas processing and hydrocarbon separations.

Frank Bryan, interim CEO of QUBIS added: "QUBIS was delighted to partner with NetScientific in the creation of our latest Queen's University spin-out. QUBIS exists to support acclaimed Queen's academics, like Professor James, in commercialising their cutting edge research and we are confident this will be the latest in a long line of successes."

Further information on the technology is available online at www.moftechnologies.com and further information on QUBIS is available online at www.qubis.co.uk/

####

For more information, please click here

Contacts:
Communications Office

44-028-909-75384

Copyright © Queen's University Belfast

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Berkeley Lab Researchers Demonstrate First Size-based Chromatography Technique for the Study of Living Cells April 22nd, 2014

PETA science consortium to present hazard testing strategy at nanotoxicology meeting: High tech field ripe for use of sophisticated non-animal testing strategies April 22nd, 2014

Harris & Harris Group Notes the Receipt of Proceeds From the Sale of Molecular Imprints' Semiconductor Business to Canon April 22nd, 2014

National Space Society Congratulates SpaceX on the Success of CRS-3 and the First Flight of the Falcon 9R April 22nd, 2014

Chemistry

Thinnest feasible membrane produced April 17th, 2014

Targeting cancer with a triple threat: MIT chemists design nanoparticles that can deliver three cancer drugs at a time April 15th, 2014

Scientists Succeed in Simultaneous Determination of Acetaminophen, Codeine in Drug Samples April 9th, 2014

Good vibrations: Using light-heated water to deliver drugs - Researchers use near-infrared light to warm water-infused polymeric particles April 1st, 2014

Nanomedicine

Cloaked DNA nanodevices survive pilot mission: Successful foray opens door to virus-like DNA nanodevices that could diagnose diseased tissues and manufacture drugs to treat them April 22nd, 2014

Berkeley Lab Researchers Demonstrate First Size-based Chromatography Technique for the Study of Living Cells April 22nd, 2014

Amino-functionalized carbon nanotubes act as a carrier for nerve growth factor April 21st, 2014

Newly-Produced Bone Cement Able to Carry Medicine April 21st, 2014

Discoveries

Like a hall of mirrors, nanostructures trap photons inside ultrathin solar cells April 22nd, 2014

Nanomaterial Outsmarts Ions April 22nd, 2014

Vacuum Ultraviolet Lamp of the Future Created in Japan: First Solid-State Vacuum UV Phosphor, Described in APL-Materials, Promises Smaller, Safer, Longer Lasting, Low Power Lamps for Industrial Applications April 22nd, 2014

Berkeley Lab Researchers Demonstrate First Size-based Chromatography Technique for the Study of Living Cells April 22nd, 2014

Materials/Metamaterials

Nanomaterial Outsmarts Ions April 22nd, 2014

Thinnest feasible membrane produced April 17th, 2014

INSCX™ exchange to present Exchange trade reporting mechanism for engineered nanomaterials (NMs) to UK regulation agencies, insurers and upstream/downstream users April 17th, 2014

Engineers develop new materials for hydrogen storage April 15th, 2014

Announcements

Berkeley Lab Researchers Demonstrate First Size-based Chromatography Technique for the Study of Living Cells April 22nd, 2014

PETA science consortium to present hazard testing strategy at nanotoxicology meeting: High tech field ripe for use of sophisticated non-animal testing strategies April 22nd, 2014

Harris & Harris Group Notes the Receipt of Proceeds From the Sale of Molecular Imprints' Semiconductor Business to Canon April 22nd, 2014

National Space Society Congratulates SpaceX on the Success of CRS-3 and the First Flight of the Falcon 9R April 22nd, 2014

Environment

Trees go high-tech: process turns cellulose into energy storage devices April 7th, 2014

Fabricating Nanostructures with Silk Could Make Clean Rooms Green Rooms March 31st, 2014

University of Waterloo Engineering to Showcase Student Design March 14th, 2014

Iran Applying Nanotechnology in Growing Number of Industries March 10th, 2014

Energy

Like a hall of mirrors, nanostructures trap photons inside ultrathin solar cells April 22nd, 2014

Global leader in solar cell manufacturing eyes New York for major expansion outside of Japan: CNSE and Solar Frontier Explore $700 Million Investment, Job Creation in New York State April 22nd, 2014

Nanoreporters tell 'sour' oil from 'sweet': Rice University's hydrogen sulfide nanoreporters gather intel on oil before pumping April 22nd, 2014

High-temperature plasmonics eyed for solar, computer innovation April 17th, 2014

NanoNews-Digest
The latest news from around the world, FREE







  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE