Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > Light might prompt graphene devices on demand: Rice University researchers find plasmonics show promise for optically induced electronics

Nanoscale plasmonic antennas called nonamers placed on graphene have the potential to create electronic circuits by hitting them with light at particular frequencies, according to researchers at Rice University. The positively and negatively doped graphene can be prompted to form phantom circuits on demand. (Rice University)
Nanoscale plasmonic antennas called nonamers placed on graphene have the potential to create electronic circuits by hitting them with light at particular frequencies, according to researchers at Rice University. The positively and negatively doped graphene can be prompted to form phantom circuits on demand.

(Rice University)

Abstract:
Rice University researchers are doping graphene with light in a way that could lead to the more efficient design and manufacture of electronics, as well as novel security and cryptography devices.

Light might prompt graphene devices on demand: Rice University researchers find plasmonics show promise for optically induced electronics

Houston, TX | Posted on October 10th, 2012

Manufacturers chemically dope silicon to adjust its semiconducting properties. But the breakthrough reported in the American Chemical Society journal ACS Nano details a novel concept: plasmon-induced doping of graphene, the ultrastrong, highly conductive, single-atom-thick form of carbon.

That could facilitate the instant creation of circuitry - optically induced electronics - on graphene patterned with plasmonic antennas that can manipulate light and inject electrons into the material to affect its conductivity.

The research incorporates both theoretical and experimental work to show the potential for making simple, graphene-based diodes and transistors on demand. The work was done by Rice scientists Naomi Halas, Stanley C. Moore Professor in Electrical and Computer Engineering, a professor of biomedical engineering, chemistry, physics and astronomy and director of the Laboratory for Nanophotonics; and Peter Nordlander, professor of physics and astronomy and of electrical and computer engineering; physicist Frank Koppens of the Institute of Photonic Sciences in Barcelona, Spain; lead author Zheyu Fang, a postdoctoral researcher at Rice; and their colleagues.

"One of the major justifications for graphene research has always been about the electronics," Nordlander said. "People who know silicon understand that electronics are only possible because it can be p- and n-doped (positive and negative), and we're learning how this can be done on graphene.

"The doping of graphene is a key parameter in the development of graphene electronics," he said. "You can't buy graphene-based electronic devices now, but there's no question that manufacturers are putting a lot of effort into it because of its potential high speed."

Researchers have investigated many strategies for doping graphene, including attaching organic or metallic molecules to its hexagonal lattice. Making it selectively - and reversibly - amenable to doping would be like having a graphene blackboard upon which circuitry can be written and erased at will, depending on the colors, angles or polarization of the light hitting it.

The ability to attach plasmonic nanoantennas to graphene affords just such a possibility. Halas and Nordlander have considerable expertise in the manipulation of the quasiparticles known as plasmons, which can be prompted to oscillate on the surface of a metal. In earlier work, they succeeded in depositing plasmonic nanoparticles that act as photodetectors on graphene.

These metal particles don't so much reflect light as redirect its energy; the plasmons that flow in waves across the surface when excited emit light or can create "hot electrons" at particular, controllable wavelengths. Adjacent plasmonic particles can interact with each other in ways that are also tunable.

That effect can easily be seen in graphs of the material's Fano resonance, where the plasmonic antennas called nonamers, each a little more than 300 nanometers across, clearly scatter light from a laser source except at the specific wavelength to which the antennas are tuned. For the Rice experiment, those nonamers - eight nanoscale gold discs arrayed around one larger disc - were deposited onto a sheet of graphene through electron-beam lithography. The nonamers were tuned to scatter light between 500 and 1,250 nanometers, but with destructive interference at about 825 nanometers.

At the point of destructive interference, most of the incident light energy is converted into hot electrons that transfer directly to the graphene sheet and change portions of the sheet from a conductor to an n-doped semiconductor.

Arrays of antennas can be affected in various ways and allow phantom circuits to materialize under the influence of light. "Quantum dot and plasmonic nanoparticle antennas can be tuned to respond to pretty much any color in the visible spectrum," Nordlander said. "We can even tune them to different polarization states, or the shape of a wavefront.

"That's the magic of plasmonics," he said. "We can tune the plasmon resonance any way we want. In this case, we decided to do it at 825 nanometers because that is in the middle of the spectral range of our available light sources. We wanted to know that we could send light at different colors and see no effect, and at that particular color see a big effect."

Nordlander said he foresees a day when, instead of using a key, people might wave a flashlight in a particular pattern to open a door by inducing the circuitry of a lock on demand. "Opening a lock becomes a direct event because we are sending the right lights toward the substrate and creating the integrated circuits. It will only answer to my call," he said.

Rice co-authors of the paper are graduate students Yumin Wang and Andrea Schlather, research scientist Zheng Liu, and Pulickel Ajayan, the Benjamin M. and Mary Greenwood Anderson Professor in Mechanical Engineering and Materials Science and of chemistry.

The research was supported by the Robert A. Welch Foundation, the Office of Naval Research, the Department of Defense National Security Science and Engineering Faculty Fellows program and Fundacio Cellex Barcelona.

####

About Rice University
Located on a 300-acre forested campus in Houston, Rice University is consistently ranked among the nation’s top 20 universities by U.S. News & World Report. Rice has highly respected schools of Architecture, Business, Continuing Studies, Engineering, Humanities, Music, Natural Sciences and Social Sciences and is home to the Baker Institute for Public Policy. With 3,708 undergraduates and 2,374 graduate students, Rice’s undergraduate student-to-faculty ratio is 6-to-1. Its residential college system builds close-knit communities and lifelong friendships, just one reason why Rice has been ranked No. 1 for best quality of life multiple times by the Princeton Review and No. 4 for “best value” among private universities by Kiplinger’s Personal Finance. To read “What they’re saying about Rice,” go to www.rice.edu/nationalmedia/Rice.pdf.

Follow Rice News and Media Relations via Twitter @RiceUNews

For more information, please click here

Contacts:
David Ruth
713-348-6327


Mike Williams
713-348-6728

Copyright © Rice University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Read the abstract at:

Laboratory for Nanophotonics:

Related News Press

News and information

Nano Ruffles in Brain Matter: Freiburg researchers decipher the role of nanostructures around brain cells in central nervous system function October 31st, 2014

Gold nanoparticle chains confine light to the nanoscale October 31st, 2014

'Nanomotor lithography' answers call for affordable, simpler device manufacturing October 31st, 2014

Device invented at Johns Hopkins provides up-close look at cancer on the move: Microscopic view of metastasis could give insight about how to keep cancer in check October 31st, 2014

Graphene

Haydale Secures Exclusive Development and Supply Agreement with Tantec A/S: New reactors to be built and commissioned by Tantec A/S represent another step forward towards the commercialisation of graphene October 24th, 2014

Nitrogen Doped Graphene Characterized by Iranian, Russian, German Scientists October 21st, 2014

Graphenea opens US branch October 16th, 2014

Charged graphene gives DNA a stage to perform molecular gymnastics October 9th, 2014

Law enforcement/Anti-Counterfeiting/Security/Loss prevention

Superconducting circuits, simplified: New circuit design could unlock the power of experimental superconducting computer chips October 18th, 2014

IRLYNX and CEA-Leti to Streamline New CMOS-based Infrared Sensing Modules Dedicated to Human-activities Characterization October 15th, 2014

Govt.-Legislation/Regulation/Funding/Policy

Gold nanoparticle chains confine light to the nanoscale October 31st, 2014

'Nanomotor lithography' answers call for affordable, simpler device manufacturing October 31st, 2014

Device invented at Johns Hopkins provides up-close look at cancer on the move: Microscopic view of metastasis could give insight about how to keep cancer in check October 31st, 2014

'Electronic skin' could improve early breast cancer detection October 29th, 2014

Chip Technology

Sussex physicists find simple solution for quantum technology challenge October 28th, 2014

Watching the hidden life of materials: Ultrafast electron diffraction experiments open a new window on the microscopic world October 27th, 2014

Breakthrough in molecular electronics paves the way for DNA-based computer circuits in the future: DNA-based programmable circuits could be more sophisticated, cheaper and simpler to make October 27th, 2014

QuantumWise guides the semiconductor industry towards the atomic scale October 24th, 2014

Discoveries

Nano Ruffles in Brain Matter: Freiburg researchers decipher the role of nanostructures around brain cells in central nervous system function October 31st, 2014

Gold nanoparticle chains confine light to the nanoscale October 31st, 2014

'Nanomotor lithography' answers call for affordable, simpler device manufacturing October 31st, 2014

Device invented at Johns Hopkins provides up-close look at cancer on the move: Microscopic view of metastasis could give insight about how to keep cancer in check October 31st, 2014

Announcements

Nano Ruffles in Brain Matter: Freiburg researchers decipher the role of nanostructures around brain cells in central nervous system function October 31st, 2014

Gold nanoparticle chains confine light to the nanoscale October 31st, 2014

'Nanomotor lithography' answers call for affordable, simpler device manufacturing October 31st, 2014

Device invented at Johns Hopkins provides up-close look at cancer on the move: Microscopic view of metastasis could give insight about how to keep cancer in check October 31st, 2014

Military

'Nanomotor lithography' answers call for affordable, simpler device manufacturing October 31st, 2014

Microrockets fueled by water neutralize chemical and biological warfare agents October 29th, 2014

Breakthrough in molecular electronics paves the way for DNA-based computer circuits in the future: DNA-based programmable circuits could be more sophisticated, cheaper and simpler to make October 27th, 2014

NanoTechnology for Defense (NT4D) October 22nd, 2014

NanoNews-Digest
The latest news from around the world, FREE





  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE