Nanotechnology Now







Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Changing the dynamics of bulk materials

The front cover image represents the 3-D structure of a new polymer-derived nanographene bulk material that consists of a 3-D network of single-layer graphene nanoplatelets. The material is mechanically robust and combines a graphene-like surface area with an open macroporosity thus allowing one to dynamically control its macroscopic properties through ion-induced interfacial electric fields.
The front cover image represents the 3-D structure of a new polymer-derived nanographene bulk material that consists of a 3-D network of single-layer graphene nanoplatelets. The material is mechanically robust and combines a graphene-like surface area with an open macroporosity thus allowing one to dynamically control its macroscopic properties through ion-induced interfacial electric fields.

Abstract:
Lawrence Livermore researchers have developed a new bulk material whose physical properties can be dynamically changed by an external signal.

Changing the dynamics of bulk materials

Livermore, CA | Posted on October 9th, 2012

The scientists came up with a method to fabricate mass-producible graphene-based bulk materials from low-cost polymer-derived carbon foams by selectively removing carbon atoms from a network composed of both unstructured carbon and graphite nanoplatelets.

"The new technique is inexpensive, scalable, and yields mechanically robust, centimeter-sized monolithic samples that are composed almost entirely of interconnected networks of single-layer graphene nanoplatelets" said Ted Baumann of Lawrence Livermore who developed the synthetic approach.

These graphene bulk materials have an ultra-high surface area and may thus be used for energy storage systems such as super-capacitors where energy is stored by polarization of the graphene electrode/electrolyte interface.

Graphene bulk material also could be used as an electrically conductive network to support the active material in battery applications. Desalination using capacitive desalination is another emerging field.

The advantage of using bulk materials versus composite materials (made from porous carbon particles and a binder) is their superior stability, which allows for longer lifetimes, higher conductivity (less losses during charging and discharging), and the ability to tune the pore structure.

"This is a potentially game changing concept in materials science," said Juergen Biener, lead LLNL author of the cover article in the Sept. 24 issue of the journal, Advanced Materials. "Just imagine what you could do with a bulk material with properties you can change dynamically by an external variable. For example, you could switch a bulk material dynamically between a conductive and an insulating state."

The specific surface area of this 3-dimensional nanographene bulk material is comparable to that of a free-standing graphene layer, but it has an open porosity that allows rapid mass transport through the material.

Most graphene based bulk materials are made by self-assembly of graphene oxide, which is still very expensive and costs up to several hundred dolloars per gram. At this price, it is not economical to use graphene based bulk materials for energy storage even though they have excellent properties for this application. Biener said. By contrast, the Livermore technique of making graphene based bulk materials is inherently inexpensive (only a few dollars per kilogram), scalable, and yields mechanically robust, centimeter-sized monolithic samples. "That is a major breakthrough toward applications," Biener said.

The group has tested the new technique by making large pieces of the material, and tested actuator and the tunable resistor applications.

Other Livermore researchers include Marcus Worsely, Arne Wittstock, Jonathan Lee, Monika Biener, Christine Orme, Sergei Kucheyev, Brandon Wood, Trevor Willey and Alex Hamza.

Other institutions include the Karlsruhe Institute of Technology, Technische Universität Darmstadt, and Technische Universitat Hamburg-Harburg.

####

About Lawrence Livermore National Laboratory
Founded in 1952, Lawrence Livermore National Laboratory provides solutions to our nation's most important national security challenges through innovative science, engineering and technology. Lawrence Livermore National Laboratory is managed by Lawrence Livermore National Security, LLC for the U.S. Department of Energy's National Nuclear Security Administration.

For more information, please click here

Contacts:
Anne M Stark
LLNL
(925) 422-9799

Copyright © Lawrence Livermore National Laboratory

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

onic Present breakthrough in CMOS-based Transceivers for mm-Wave Radar Systems March 1st, 2015

Graphene Shows Promise In Eradication Of Stem Cancer Cells March 1st, 2015

Novel Method to Determine Optical Purity of Drug Components March 1st, 2015

Scientific breakthrough in rechargeable batteries: Researchers from Singapore and Québec Team Up to Develop Next-Generation Materials to Power Electronic Devices and Electric Vehicles February 28th, 2015

Graphene

Graphene Shows Promise In Eradication Of Stem Cancer Cells March 1st, 2015

Graphene shows potential as novel anti-cancer therapeutic strategy: University of Manchester scientists have used graphene to target and neutralise cancer stem cells while not harming other cells February 26th, 2015

European roadmap for graphene science and technology published February 25th, 2015

Laboratories

First detailed microscopy evidence of bacteria at the lower size limit of life: Berkeley Lab research provides comprehensive description of ultra-small bacteria February 28th, 2015

Dendrite eraser: New electrolyte rids batteries of short-circuiting fibers: Solution enables a battery with both high efficiency & current density February 24th, 2015

Govt.-Legislation/Regulation/Funding/Policy

First detailed microscopy evidence of bacteria at the lower size limit of life: Berkeley Lab research provides comprehensive description of ultra-small bacteria February 28th, 2015

Warming up the world of superconductors: Clusters of aluminum metal atoms become superconductive at surprisingly high temperatures February 25th, 2015

SUNY Poly CNSE Researchers and Corporate Partners to Present Forty Papers at Globally Recognized Lithography Conference: SUNY Poly CNSE Research Group Awarded Both ‘Best Research Paper’ and ‘Best Research Poster’ at SPIE Advanced Lithography 2015 forum February 25th, 2015

European roadmap for graphene science and technology published February 25th, 2015

Chip Technology

onic Present breakthrough in CMOS-based Transceivers for mm-Wave Radar Systems March 1st, 2015

New nanowire structure absorbs light efficiently: Dual-type nanowire arrays can be used in applications such as LEDs and solar cells February 25th, 2015

SUNY Poly CNSE Researchers and Corporate Partners to Present Forty Papers at Globally Recognized Lithography Conference: SUNY Poly CNSE Research Group Awarded Both ‘Best Research Paper’ and ‘Best Research Poster’ at SPIE Advanced Lithography 2015 forum February 25th, 2015

Ultra-thin nanowires can trap electron 'twisters' that disrupt superconductors February 24th, 2015

Materials/Metamaterials

Moving molecule writes letters: Caging of molecules allows investigation of equilibrium thermodynamics February 27th, 2015

Graphene shows potential as novel anti-cancer therapeutic strategy: University of Manchester scientists have used graphene to target and neutralise cancer stem cells while not harming other cells February 26th, 2015

In quest for better lithium-air batteries, chemists boost carbon's stability: Nanoparticle coatings improve stability, cyclability of '3DOm' carbon February 25th, 2015

Learning by eye: Silicon micro-funnels increase the efficiency of solar cells February 25th, 2015

Announcements

onic Present breakthrough in CMOS-based Transceivers for mm-Wave Radar Systems March 1st, 2015

Graphene Shows Promise In Eradication Of Stem Cancer Cells March 1st, 2015

Novel Method to Determine Optical Purity of Drug Components March 1st, 2015

Scientific breakthrough in rechargeable batteries: Researchers from Singapore and Québec Team Up to Develop Next-Generation Materials to Power Electronic Devices and Electric Vehicles February 28th, 2015

Industrial

Novel Method to Determine Optical Purity of Drug Components March 1st, 2015

In quest for better lithium-air batteries, chemists boost carbon's stability: Nanoparticle coatings improve stability, cyclability of '3DOm' carbon February 25th, 2015

Purification of Industrial Wastewater Using Visible-Light Sensitive Photocatalysts February 24th, 2015

Increasing Efficiency of Cooling Devices in Oil, Gas Industries February 21st, 2015

Battery Technology/Capacitors/Generators/Piezoelectrics/Thermoelectrics/Energy storage

Scientific breakthrough in rechargeable batteries: Researchers from Singapore and Québec Team Up to Develop Next-Generation Materials to Power Electronic Devices and Electric Vehicles February 28th, 2015

In quest for better lithium-air batteries, chemists boost carbon's stability: Nanoparticle coatings improve stability, cyclability of '3DOm' carbon February 25th, 2015

Dendrite eraser: New electrolyte rids batteries of short-circuiting fibers: Solution enables a battery with both high efficiency & current density February 24th, 2015

New Paper-like Material Could Boost Electric Vehicle Batteries: Researchers create silicon nanofibers 100 times thinner than human hair for potential applications in batteries for electric cars and personal electronics February 20th, 2015

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2015 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE