Nanotechnology Now

Our NanoNews Digest Sponsors



Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > Changing the dynamics of bulk materials

The front cover image represents the 3-D structure of a new polymer-derived nanographene bulk material that consists of a 3-D network of single-layer graphene nanoplatelets. The material is mechanically robust and combines a graphene-like surface area with an open macroporosity thus allowing one to dynamically control its macroscopic properties through ion-induced interfacial electric fields.
The front cover image represents the 3-D structure of a new polymer-derived nanographene bulk material that consists of a 3-D network of single-layer graphene nanoplatelets. The material is mechanically robust and combines a graphene-like surface area with an open macroporosity thus allowing one to dynamically control its macroscopic properties through ion-induced interfacial electric fields.

Abstract:
Lawrence Livermore researchers have developed a new bulk material whose physical properties can be dynamically changed by an external signal.

Changing the dynamics of bulk materials

Livermore, CA | Posted on October 9th, 2012

The scientists came up with a method to fabricate mass-producible graphene-based bulk materials from low-cost polymer-derived carbon foams by selectively removing carbon atoms from a network composed of both unstructured carbon and graphite nanoplatelets.

"The new technique is inexpensive, scalable, and yields mechanically robust, centimeter-sized monolithic samples that are composed almost entirely of interconnected networks of single-layer graphene nanoplatelets" said Ted Baumann of Lawrence Livermore who developed the synthetic approach.

These graphene bulk materials have an ultra-high surface area and may thus be used for energy storage systems such as super-capacitors where energy is stored by polarization of the graphene electrode/electrolyte interface.

Graphene bulk material also could be used as an electrically conductive network to support the active material in battery applications. Desalination using capacitive desalination is another emerging field.

The advantage of using bulk materials versus composite materials (made from porous carbon particles and a binder) is their superior stability, which allows for longer lifetimes, higher conductivity (less losses during charging and discharging), and the ability to tune the pore structure.

"This is a potentially game changing concept in materials science," said Juergen Biener, lead LLNL author of the cover article in the Sept. 24 issue of the journal, Advanced Materials. "Just imagine what you could do with a bulk material with properties you can change dynamically by an external variable. For example, you could switch a bulk material dynamically between a conductive and an insulating state."

The specific surface area of this 3-dimensional nanographene bulk material is comparable to that of a free-standing graphene layer, but it has an open porosity that allows rapid mass transport through the material.

Most graphene based bulk materials are made by self-assembly of graphene oxide, which is still very expensive and costs up to several hundred dolloars per gram. At this price, it is not economical to use graphene based bulk materials for energy storage even though they have excellent properties for this application. Biener said. By contrast, the Livermore technique of making graphene based bulk materials is inherently inexpensive (only a few dollars per kilogram), scalable, and yields mechanically robust, centimeter-sized monolithic samples. "That is a major breakthrough toward applications," Biener said.

The group has tested the new technique by making large pieces of the material, and tested actuator and the tunable resistor applications.

Other Livermore researchers include Marcus Worsely, Arne Wittstock, Jonathan Lee, Monika Biener, Christine Orme, Sergei Kucheyev, Brandon Wood, Trevor Willey and Alex Hamza.

Other institutions include the Karlsruhe Institute of Technology, Technische Universität Darmstadt, and Technische Universitat Hamburg-Harburg.

####

About Lawrence Livermore National Laboratory
Founded in 1952, Lawrence Livermore National Laboratory provides solutions to our nation's most important national security challenges through innovative science, engineering and technology. Lawrence Livermore National Laboratory is managed by Lawrence Livermore National Security, LLC for the U.S. Department of Energy's National Nuclear Security Administration.

For more information, please click here

Contacts:
Anne M Stark
LLNL
(925) 422-9799

Copyright © Lawrence Livermore National Laboratory

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Iran Exports Nanodrugs to Syria November 24th, 2014

Iranian Experts Clean Uranium-Contaminated Water by Nano-Particles November 23rd, 2014

Novel Method Found for Connection of Metallic Alloys to Polymers November 23rd, 2014

New research project supports internationalisation in nano-research: Launch of new “Baltic Sea Network” November 22nd, 2014

Laboratories

NRL Scientists Discover Novel Metamaterial Properties within Hexagonal Boron Nitride November 20th, 2014

Brookhaven Science Associates Awarded Brookhaven Lab Management Contract Battelle/Stony Brook University partnership retains contract it has held since 1998 November 13th, 2014

SUNY Poly Student Awarded Fellowship with the U.S. Department of Energy's Postgraduate Research Program: Ph.D. Candidate Accepts Postmaster's Appointment To Conduct Research At Albany NanoTech Complex November 13th, 2014

Graphene

Graphene/nanotube hybrid benefits flexible solar cells: Rice University labs create novel electrode for dye-sensitized cells November 17th, 2014

Graphene Frontiers Partners with Madico to Accelerate Material Production: Deal to ignite and fulfill demand for industrial scale graphene film that supports energy, consumer electronics, membranes/filtration, solar and other applications November 12th, 2014

Govt.-Legislation/Regulation/Funding/Policy

New research project supports internationalisation in nano-research: Launch of new “Baltic Sea Network” November 22nd, 2014

3rd Iran-Proposed Nano Standard Approved by International Standard Organization November 22nd, 2014

NMTI announces breakthrough solutions for HAMR nanoantenna for next-generation ultra-high density magnetic storage November 21st, 2014

Sustainable Nanotechnologies Project November 20th, 2014

Chip Technology

Nanometrics Announces Upcoming Investor Events November 19th, 2014

A novel method for identifying the body’s ‘noisiest’ networks November 19th, 2014

Researchers create & control spin waves, lifting prospects for enhanced info processing November 17th, 2014

VDMA Electronics Production Equipment: Growth track for 2014 and 2015 confirmed: Business climate survey shows robust industry sector November 14th, 2014

Materials/Metamaterials

Novel Method Found for Connection of Metallic Alloys to Polymers November 23rd, 2014

Sustainable Nanotechnologies Project November 20th, 2014

Total Nanofiber Solutions Company FibeRio® Launches The Fiber Engine® FX Series Systems with 10X Increase in Output November 18th, 2014

Nanocomposites Strengthen Bone Implants November 13th, 2014

Announcements

Iran Exports Nanodrugs to Syria November 24th, 2014

Iranian Experts Clean Uranium-Contaminated Water by Nano-Particles November 23rd, 2014

Novel Method Found for Connection of Metallic Alloys to Polymers November 23rd, 2014

New research project supports internationalisation in nano-research: Launch of new “Baltic Sea Network” November 22nd, 2014

Industrial

Iranian Experts Clean Uranium-Contaminated Water by Nano-Particles November 23rd, 2014

Biosenta Inc. Updates New Household Disinfectant Testing Results; It Kills 100% of a Broad Range of Deadly Molds, Fungi, Bacteria, and Viruses, Including Ebola and Enterovirus D68 November 20th, 2014

OCSiAl Builds Worldwide Partnership Network November 12th, 2014

Graphene Frontiers Partners with Madico to Accelerate Material Production: Deal to ignite and fulfill demand for industrial scale graphene film that supports energy, consumer electronics, membranes/filtration, solar and other applications November 12th, 2014

Battery Technology/Capacitors/Generators/Piezoelectrics/Thermoelectrics/Energy storage

OCSiAl Builds Worldwide Partnership Network November 12th, 2014

Drexel Engineers Improve Strength, Flexibility of Atom-Thick Films November 11th, 2014

A billion holes can make a battery November 10th, 2014

Super stable garnet ceramics may be ideal for high-energy lithium batteries October 21st, 2014

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More












ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE