Nanotechnology Now

Our NanoNews Digest Sponsors



Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > Changing the dynamics of bulk materials

The front cover image represents the 3-D structure of a new polymer-derived nanographene bulk material that consists of a 3-D network of single-layer graphene nanoplatelets. The material is mechanically robust and combines a graphene-like surface area with an open macroporosity thus allowing one to dynamically control its macroscopic properties through ion-induced interfacial electric fields.
The front cover image represents the 3-D structure of a new polymer-derived nanographene bulk material that consists of a 3-D network of single-layer graphene nanoplatelets. The material is mechanically robust and combines a graphene-like surface area with an open macroporosity thus allowing one to dynamically control its macroscopic properties through ion-induced interfacial electric fields.

Abstract:
Lawrence Livermore researchers have developed a new bulk material whose physical properties can be dynamically changed by an external signal.

Changing the dynamics of bulk materials

Livermore, CA | Posted on October 9th, 2012

The scientists came up with a method to fabricate mass-producible graphene-based bulk materials from low-cost polymer-derived carbon foams by selectively removing carbon atoms from a network composed of both unstructured carbon and graphite nanoplatelets.

"The new technique is inexpensive, scalable, and yields mechanically robust, centimeter-sized monolithic samples that are composed almost entirely of interconnected networks of single-layer graphene nanoplatelets" said Ted Baumann of Lawrence Livermore who developed the synthetic approach.

These graphene bulk materials have an ultra-high surface area and may thus be used for energy storage systems such as super-capacitors where energy is stored by polarization of the graphene electrode/electrolyte interface.

Graphene bulk material also could be used as an electrically conductive network to support the active material in battery applications. Desalination using capacitive desalination is another emerging field.

The advantage of using bulk materials versus composite materials (made from porous carbon particles and a binder) is their superior stability, which allows for longer lifetimes, higher conductivity (less losses during charging and discharging), and the ability to tune the pore structure.

"This is a potentially game changing concept in materials science," said Juergen Biener, lead LLNL author of the cover article in the Sept. 24 issue of the journal, Advanced Materials. "Just imagine what you could do with a bulk material with properties you can change dynamically by an external variable. For example, you could switch a bulk material dynamically between a conductive and an insulating state."

The specific surface area of this 3-dimensional nanographene bulk material is comparable to that of a free-standing graphene layer, but it has an open porosity that allows rapid mass transport through the material.

Most graphene based bulk materials are made by self-assembly of graphene oxide, which is still very expensive and costs up to several hundred dolloars per gram. At this price, it is not economical to use graphene based bulk materials for energy storage even though they have excellent properties for this application. Biener said. By contrast, the Livermore technique of making graphene based bulk materials is inherently inexpensive (only a few dollars per kilogram), scalable, and yields mechanically robust, centimeter-sized monolithic samples. "That is a major breakthrough toward applications," Biener said.

The group has tested the new technique by making large pieces of the material, and tested actuator and the tunable resistor applications.

Other Livermore researchers include Marcus Worsely, Arne Wittstock, Jonathan Lee, Monika Biener, Christine Orme, Sergei Kucheyev, Brandon Wood, Trevor Willey and Alex Hamza.

Other institutions include the Karlsruhe Institute of Technology, Technische Universität Darmstadt, and Technische Universitat Hamburg-Harburg.

####

About Lawrence Livermore National Laboratory
Founded in 1952, Lawrence Livermore National Laboratory provides solutions to our nation's most important national security challenges through innovative science, engineering and technology. Lawrence Livermore National Laboratory is managed by Lawrence Livermore National Security, LLC for the U.S. Department of Energy's National Nuclear Security Administration.

For more information, please click here

Contacts:
Anne M Stark
LLNL
(925) 422-9799

Copyright © Lawrence Livermore National Laboratory

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Graphene

Platinum meets its match in quantum dots from coal: Rice University's cheap hybrid outperforms rare metal as fuel-cell catalyst October 1st, 2014

$18-million NSF investment aims to take flat materials to new heights: 2-D alternatives to graphene may enable exciting advances in electronics, photonics, sensors and other applications October 1st, 2014

Breakthrough in ALD-graphene by Picosun technology October 1st, 2014

Graphene chips are close to significant commercialization October 1st, 2014

Laboratories

Novel approach to magnetic measurements atom-by-atom October 1st, 2014

News and information

'Stealth' nanoparticles could improve cancer vaccines October 1st, 2014

Stressed Out: Research Sheds New Light on Why Rechargeable Batteries Fail October 1st, 2014

New Absorber Will Lead to Better Biosensor: Biosensors are more sensitive and able to detect smaller changes in the environment October 1st, 2014

Govt.-Legislation/Regulation/Funding/Policy

Platinum meets its match in quantum dots from coal: Rice University's cheap hybrid outperforms rare metal as fuel-cell catalyst October 1st, 2014

$18-million NSF investment aims to take flat materials to new heights: 2-D alternatives to graphene may enable exciting advances in electronics, photonics, sensors and other applications October 1st, 2014

Novel approach to magnetic measurements atom-by-atom October 1st, 2014

'Stealth' nanoparticles could improve cancer vaccines October 1st, 2014

Chip Technology

$18-million NSF investment aims to take flat materials to new heights: 2-D alternatives to graphene may enable exciting advances in electronics, photonics, sensors and other applications October 1st, 2014

Breakthrough in ALD-graphene by Picosun technology October 1st, 2014

Graphene chips are close to significant commercialization October 1st, 2014

Speed at its limits September 30th, 2014

Materials/Metamaterials

Rice launches Center for Quantum Materials: RCQM will immerse global visitors in cross-disciplinary research September 30th, 2014

How things coil: Researchers discover that simulation technology designed for Hollywood can be used as a predictive tool for understanding fundamental engineering problems September 29th, 2014

Iranian Scientists Determine Grain Size, Minimize Time of Nanocomposite Synthesis September 29th, 2014

Nanoparticles Used to Improve Quality of Bone Cement September 29th, 2014

Announcements

'Stealth' nanoparticles could improve cancer vaccines October 1st, 2014

Stressed Out: Research Sheds New Light on Why Rechargeable Batteries Fail October 1st, 2014

New Absorber Will Lead to Better Biosensor: Biosensors are more sensitive and able to detect smaller changes in the environment October 1st, 2014

Graphene chips are close to significant commercialization October 1st, 2014

Industrial

Park Systems Announces Outsourced Analytical Services Including AFM Surface Imaging, Data Analysis and Interpretation September 30th, 2014

Graphene and Amaranthus Superparamagnets: Breakthrough nanoparticles discovery of Indian researcher September 23rd, 2014

Wear-resistant ceramic powder maximises component lifespan in high-stress applications: Innovnano’s nanostructured 3YSZ offers improved tribological performance for manufacturing components September 18th, 2014

Industrial waste converted in coating for aircraft turbines September 11th, 2014

Battery Technology/Capacitors/Generators/Piezoelectrics/Thermoelectrics

Stressed Out: Research Sheds New Light on Why Rechargeable Batteries Fail October 1st, 2014

Graphene and Amaranthus Superparamagnets: Breakthrough nanoparticles discovery of Indian researcher September 23rd, 2014

IEEE International Electron Devices Meeting To Celebrate 60th Anniversary as The Leading Technical Conference for Advanced Semiconductor Devices September 18th, 2014

Toward making lithium-sulfur batteries a commercial reality for a bigger energy punch September 17th, 2014

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE