Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Changing the dynamics of bulk materials

The front cover image represents the 3-D structure of a new polymer-derived nanographene bulk material that consists of a 3-D network of single-layer graphene nanoplatelets. The material is mechanically robust and combines a graphene-like surface area with an open macroporosity thus allowing one to dynamically control its macroscopic properties through ion-induced interfacial electric fields.
The front cover image represents the 3-D structure of a new polymer-derived nanographene bulk material that consists of a 3-D network of single-layer graphene nanoplatelets. The material is mechanically robust and combines a graphene-like surface area with an open macroporosity thus allowing one to dynamically control its macroscopic properties through ion-induced interfacial electric fields.

Abstract:
Lawrence Livermore researchers have developed a new bulk material whose physical properties can be dynamically changed by an external signal.

Changing the dynamics of bulk materials

Livermore, CA | Posted on October 9th, 2012

The scientists came up with a method to fabricate mass-producible graphene-based bulk materials from low-cost polymer-derived carbon foams by selectively removing carbon atoms from a network composed of both unstructured carbon and graphite nanoplatelets.

"The new technique is inexpensive, scalable, and yields mechanically robust, centimeter-sized monolithic samples that are composed almost entirely of interconnected networks of single-layer graphene nanoplatelets" said Ted Baumann of Lawrence Livermore who developed the synthetic approach.

These graphene bulk materials have an ultra-high surface area and may thus be used for energy storage systems such as super-capacitors where energy is stored by polarization of the graphene electrode/electrolyte interface.

Graphene bulk material also could be used as an electrically conductive network to support the active material in battery applications. Desalination using capacitive desalination is another emerging field.

The advantage of using bulk materials versus composite materials (made from porous carbon particles and a binder) is their superior stability, which allows for longer lifetimes, higher conductivity (less losses during charging and discharging), and the ability to tune the pore structure.

"This is a potentially game changing concept in materials science," said Juergen Biener, lead LLNL author of the cover article in the Sept. 24 issue of the journal, Advanced Materials. "Just imagine what you could do with a bulk material with properties you can change dynamically by an external variable. For example, you could switch a bulk material dynamically between a conductive and an insulating state."

The specific surface area of this 3-dimensional nanographene bulk material is comparable to that of a free-standing graphene layer, but it has an open porosity that allows rapid mass transport through the material.

Most graphene based bulk materials are made by self-assembly of graphene oxide, which is still very expensive and costs up to several hundred dolloars per gram. At this price, it is not economical to use graphene based bulk materials for energy storage even though they have excellent properties for this application. Biener said. By contrast, the Livermore technique of making graphene based bulk materials is inherently inexpensive (only a few dollars per kilogram), scalable, and yields mechanically robust, centimeter-sized monolithic samples. "That is a major breakthrough toward applications," Biener said.

The group has tested the new technique by making large pieces of the material, and tested actuator and the tunable resistor applications.

Other Livermore researchers include Marcus Worsely, Arne Wittstock, Jonathan Lee, Monika Biener, Christine Orme, Sergei Kucheyev, Brandon Wood, Trevor Willey and Alex Hamza.

Other institutions include the Karlsruhe Institute of Technology, Technische Universitt Darmstadt, and Technische Universitat Hamburg-Harburg.

####

About Lawrence Livermore National Laboratory
Founded in 1952, Lawrence Livermore National Laboratory provides solutions to our nation's most important national security challenges through innovative science, engineering and technology. Lawrence Livermore National Laboratory is managed by Lawrence Livermore National Security, LLC for the U.S. Department of Energy's National Nuclear Security Administration.

For more information, please click here

Contacts:
Anne M Stark
LLNL
(925) 422-9799

Copyright © Lawrence Livermore National Laboratory

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Ultra-thin memory storage device paves way for more powerful computing January 17th, 2018

Scientists synthesize nanoparticle-antioxidants to treat strokes and spinal cord injuries January 16th, 2018

New catalyst for hydrogen production is a step toward clean fuel: Carbon-based nanocomposite with embedded metal ions yields impressive performance as catalyst for electrolysis of water to generate hydrogen January 16th, 2018

'Gyroscope' molecules form crystal that's both solid and full of motion: New type of molecular machine designed by UCLA researchers could have wide-ranging applications in technology and science January 16th, 2018

The nanoscopic structure that locks up our genes January 16th, 2018

Graphene/ Graphite

New catalyst for hydrogen production is a step toward clean fuel: Carbon-based nanocomposite with embedded metal ions yields impressive performance as catalyst for electrolysis of water to generate hydrogen January 16th, 2018

Study boosts hope for cheaper fuel cells: Rice University researchers show how to optimize nanomaterials for fuel-cell cathodes January 6th, 2018

Laboratories

Laboratory Management Web Application Goes Nationwide January 9th, 2018

NRL improves optical efficiency in nanophotonic devices January 4th, 2018

Tweaking quantum dots powers-up double-pane solar windows: Engineered quantum dots could bring down the cost of solar electricity January 2nd, 2018

Govt.-Legislation/Regulation/Funding/Policy

Ultra-thin memory storage device paves way for more powerful computing January 17th, 2018

'Gyroscope' molecules form crystal that's both solid and full of motion: New type of molecular machine designed by UCLA researchers could have wide-ranging applications in technology and science January 16th, 2018

The nanoscopic structure that locks up our genes January 16th, 2018

New exotic phenomena seen in photonic crystals: Researchers observe, for the first time, topological effects unique to an open system January 12th, 2018

Chip Technology

Ultra-thin memory storage device paves way for more powerful computing January 17th, 2018

'Gyroscope' molecules form crystal that's both solid and full of motion: New type of molecular machine designed by UCLA researchers could have wide-ranging applications in technology and science January 16th, 2018

New oxide and semiconductor combination builds new device potential: Researchers integrated oxide two-dimensional electron gases with gallium arsenide and paved the way toward new opto-electrical devices January 10th, 2018

STMicroelectronics Selects GLOBALFOUNDRIES 22FDX to Extend Its FD-SOI Platform and Technology Leadership : GFs FDX technology will enable ST to deliver high-performance, low-power products for next-generation consumer and industrial applications January 9th, 2018

Materials/Metamaterials

Nanotube fibers in a jiffy: Rice University lab makes short nanotube samples by hand to dramatically cut production time January 11th, 2018

New oxide and semiconductor combination builds new device potential: Researchers integrated oxide two-dimensional electron gases with gallium arsenide and paved the way toward new opto-electrical devices January 10th, 2018

Ultrafine fibers have exceptional strength: New technique developed at MIT could produce strong, resilient nanofibers for many applications January 5th, 2018

NRL improves optical efficiency in nanophotonic devices January 4th, 2018

Announcements

Ultra-thin memory storage device paves way for more powerful computing January 17th, 2018

Scientists synthesize nanoparticle-antioxidants to treat strokes and spinal cord injuries January 16th, 2018

New catalyst for hydrogen production is a step toward clean fuel: Carbon-based nanocomposite with embedded metal ions yields impressive performance as catalyst for electrolysis of water to generate hydrogen January 16th, 2018

'Gyroscope' molecules form crystal that's both solid and full of motion: New type of molecular machine designed by UCLA researchers could have wide-ranging applications in technology and science January 16th, 2018

Industrial

STMicroelectronics Selects GLOBALFOUNDRIES 22FDX to Extend Its FD-SOI Platform and Technology Leadership : GFs FDX technology will enable ST to deliver high-performance, low-power products for next-generation consumer and industrial applications January 9th, 2018

A new product to help combat mouldy walls, thanks to technology developed at the ICN2 December 14th, 2017

Silicon Sense first to achieve EPA approval to import detonation nanodiamonds to US: Nanodiamond additives can significantly improve the performance of metal finishing, polymer thermal and mechanical compounds, polymer coatings, CMP polishing and a range of other applications November 29th, 2017

A new way to mix oil and water: Condensation-based method developed at MIT could create stable nanoscale emulsions November 8th, 2017

Battery Technology/Capacitors/Generators/Piezoelectrics/Thermoelectrics/Energy storage

Ultra-thin memory storage device paves way for more powerful computing January 17th, 2018

Novel MOF shell-derived surface modification of Li-rich layered oxide cathode December 29th, 2017

Paving the way for a non-electric battery to store solar energy: UMass Amherst scientists say a polymer chain organized like a string of Christmas lights assists energy storage December 22nd, 2017

Sandia researchers make solid ground toward better lithium-ion battery interfaces: Reducing the traffic jam in batteries December 13th, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project