Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > Malvern Instruments introduces DLS Microrheology: New Zetasizer Nano ZSP offers emerging rheology technique for weakly structured fluids

Malvern’s new Zetasizer Nano ZSP makes the technique of DLS Microrheology accessible to a more laboratories
Malvern’s new Zetasizer Nano ZSP makes the technique of DLS Microrheology accessible to a more laboratories

Abstract:
With the recent launch of the new top of the range Zetasizer Nano ZSP system, Malvern Instruments has added dynamic light scattering (DLS) Microrheology to its portfolio of materials characterization techniques. To introduce this powerful technique, the company has published an in-depth paper that explains the background to microrheology, and how it can be used to investigate the rheological properties of even the most weakly structured fluids, using sample volumes on the microliter scale. ‘An Introduction to DLS Microrheology' includes data for protein (bovine serum albumin (BSA)) and polyethylene oxide (PEO) solutions that illustrate the significance and usefulness of the method. It is freely available from the Malvern website at
www.malvern.com/DLS-Microrheology-paper

Malvern Instruments introduces DLS Microrheology: New Zetasizer Nano ZSP offers emerging rheology technique for weakly structured fluids

Malvern, UK | Posted on October 9th, 2012

Microrheology is a relatively new analytical methodology that has been the subject of increasing academic study over the past 15 years, and is of growing interest to those researchers working at the forefront of rheological characterization. It involves tracking the motion of colloidal tracer particles dispersed in a complex fluid sample, in order to extract the viscoelastic properties of the system. DLS Microrheology has attributes that are particularly advantageous for characterizing low viscosity samples, such as polymer or protein solutions, and extends the measurement range and application of rheology well beyond the regimes accessible with even the most sophisticated mechanical rheometers. A central advantage is that it can access the very high frequencies, or short timescale measurements, that are needed to characterize these weakly structured fluids. Furthermore, data can be obtained with very small sample volumes so the technique is well-suited to the analysis of high value protein solutions, for example.

‘An Introduction to DLS Microrheology' provides a general overview of microrheology techniques, before going on to focus on DLS Microrheology and the underlying theory. Practical aspects of microrheology are discussed in some detail, with guidance on method development and sample preparation, both of which are particularly important factors for robust measurements. The paper concludes with some experimental data that demonstrate applicability.

These data show how DLS Microrheology, combined with conventional rotational rheology, can significantly extend the measured viscoelastic spectrum for polymer solutions for characterization of short timescale dynamics, and demonstrate its value for protein solution characterization. The results indicate that the development of solution viscoelasticity can be used to investigate the onset of protein aggregation in denaturing BSA solutions, as well as assessing solution viscosity as a function of concentration to determine onset of non-Newtonian flow properties. www.malvern.com

Malvern, Malvern Instruments and Zetasizer are registered trademarks of Malvern Instruments Ltd

####

About Malvern Instruments
Malvern Instruments is a market leader in measuring performance controlling material properties. These include particle size, particle shape, zeta potential, molecular weight, size and conformation, rheological properties and chemical identification. Malvern delivers the systems, support and expertise that ensure the analytical integrity and productivity needed to drive research, development and manufacturing.

Malvern’s measurement solutions for scientists, technologists and engineers advance continually through customer collaboration. Complementary materials characterization systems deliver inter-related measurements that reflect the complexities of particulates and disperse systems, nanomaterials and macromolecules. Combining intelligently implemented technologies with in-depth industry applications knowledge and support, Malvern provides customers with the competitive advantage they demand.

Headquartered in Malvern, UK, Malvern Instruments has subsidiary organizations in all major European markets, North America, China, Japan and Korea, a joint venture in India, a global distributor network and applications laboratories around the world.

For more information, please click here

Contacts:
For press information, please contact:

Trish Appleton
Kapler Communications
Phoenix House, Phoenix Park
Eaton Socon, Cambridgeshire, PE19 8EP, UK
Tel: +44 (0)1480 471059
Fax: +44 (0)1480 471069


USA contact:

Marisa Fraser
Malvern Instruments Inc.
117 Flanders Road
Westborough, MA 01581-1042 USA
Tel: +1 508 768 6400
Fax: +1 508 768 6403


Please send sales enquiries to:

Alison Vines
Malvern Instruments Ltd
Enigma Business Park, Grovewood Road
Malvern, Worcestershire WR14 1XZ UK
Tel: +44 (0) 1684 892456
Fax: +44 (0) 1684 892789

Copyright © Malvern Instruments

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Industrial Nanotech, Inc. to Publish PCAOB Audited Financials July 31st, 2014

Nanostructured metal-oxide catalyst efficiently converts CO2 to methanol: Highly reactive sites at interface of 2 nanoscale components could help overcome hurdle of using CO2 as a starting point in producing useful products July 31st, 2014

Carnegie Mellon Chemists Create Nanofibers Using Unprecedented New Method July 31st, 2014

Pressure probing potential photoelectronic manufacturing compound July 31st, 2014

Announcements

Industrial Nanotech, Inc. to Publish PCAOB Audited Financials July 31st, 2014

Nanostructured metal-oxide catalyst efficiently converts CO2 to methanol: Highly reactive sites at interface of 2 nanoscale components could help overcome hurdle of using CO2 as a starting point in producing useful products July 31st, 2014

Carnegie Mellon Chemists Create Nanofibers Using Unprecedented New Method July 31st, 2014

Pressure probing potential photoelectronic manufacturing compound July 31st, 2014

Tools

Carnegie Mellon Chemists Create Nanofibers Using Unprecedented New Method July 31st, 2014

New Objective Focusing Nanopositioner from nPoint July 30th, 2014

University of Manchester selects Anasys AFM-IR for coatings and corrosion research July 30th, 2014

Analytical solutions from Malvern Instruments support University of Wisconsin-Milwaukee researchers in understanding environmental effects of nanomaterials July 30th, 2014

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE