Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Research Shows Graphene Nanopores Can Be Controlled: Less Costly Ways of Sequencing DNA Could Open New Possibilities for Disease Prevention

These are transmission electron microscope images of a nanopore in graphene. The original pore on the left grows considerably under the influence of the electron beam. The image on the right is the pore after four minutes at 800 C.  Pores either shrink or grow depending on the temperature and electron beam irradiation.
These are transmission electron microscope images of a nanopore in graphene. The original pore on the left grows considerably under the influence of the electron beam. The image on the right is the pore after four minutes at 800 C. Pores either shrink or grow depending on the temperature and electron beam irradiation.

Abstract:
Engineers at The University of Texas at Dallas have used advanced techniques to make the material graphene small enough to read DNA.

Research Shows Graphene Nanopores Can Be Controlled: Less Costly Ways of Sequencing DNA Could Open New Possibilities for Disease Prevention

Dallas, TX | Posted on October 3rd, 2012

Shrinking the size of a graphene pore to less than one nanometer - small enough to thread a DNA strand - opens the possibility of using graphene as a low-cost tool to sequence DNA.

"Sequencing DNA at a very cheap cost would enable scientists and doctors to better predict and diagnose disease, and also tailor a drug to an individual's genetic code," said Dr. Moon Kim, professor of materials science and engineering. He was senior author of an article depicted on the cover of the September print edition of Carbon.

The first reading, or sequencing, of human DNA by the international scientific research group known as the Human Genome Project cost about $2.7 billion. Engineers have been researching alternative nanomaterials materials that can thread DNA strands to reduce the cost to less than $1,000 per person.

It was demonstrated in 2004 that graphite could be changed into a sheet of bonded carbon atoms called graphene, which is believed to be the strongest material ever measured. Because graphene is thin and strong, researchers have searched for ways to control its pore size. They have not had much success. A nanoscale sensor made of graphene could be integrated with existing silicon-based electronics that are very advanced and yet cheap, to reduce costs.

In this study, Kim and his team manipulated the size of the nanopore by using an electron beam from an advanced electron microscope and in-situ heating up to 1200 degree Celsius temperature.

"This is the first time that the size of the graphene nanopore has been controlled, especially shrinking it," said Kim. "We used high temperature heating and electron beam simultaneously, one technique without the other doesn't work."

Now that researchers know the pore size can be controlled, the next step in their research will be to build a prototype device.

"If we could sequence DNA cheaply, the possibilities for disease prevention, diagnosis and treatment would be limitless," Kim said. "Controlling graphene puts us one step closer to making this happen."

Other UT Dallas researchers from the Erik Jonsson School of Engineering and Computer Science involved in this project are Dr. Ning Lu, research scientist in materials science and engineering; Dr. Jinguo Wang, associate EM Facility Director; and Dr. Herman Carlo Floresca, postdoctoral research fellow in materials science and engineering.

The study was funded by the Southwest Academy of Nanoelectronics, Air Force Office of Scientific Research and the World Class University Program.

####

For more information, please click here

Contacts:
LaKisha Ladson

972-883-4183
or
Office of Media Relations
UT Dallas, (972) 883-2155

Copyright © University of Texas at Dallas

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Spin current detection in quantum materials unlocks potential for alternative electronics October 15th, 2017

Quantum manipulation power for quantum information processing gets a boost: Improving the efficiency of quantum heat engines involves reducing the number of photons in a cavity, ultimately impacting quantum manipulation power October 14th, 2017

Injecting electrons jolts 2-D structure into new atomic pattern: Berkeley Lab study is first to show potential of energy-efficient next-gen electronic memory October 13th, 2017

The secret to improving liquid crystal's mechanical performance: Better lubricating properties of lamellar liquid crystals could stem from changing the mobility of their structural dislocations by adding nanoparticles October 13th, 2017

Graphene/ Graphite

Graphene forged into three-dimensional shapes September 26th, 2017

New quantum phenomena in graphene superlattices September 18th, 2017

Graphene based terahertz absorbers: Printable graphene inks enable ultrafast lasers in the terahertz range September 13th, 2017

UConn chemist synthesizes pure graphene August 30th, 2017

Govt.-Legislation/Regulation/Funding/Policy

Spin current detection in quantum materials unlocks potential for alternative electronics October 15th, 2017

Injecting electrons jolts 2-D structure into new atomic pattern: Berkeley Lab study is first to show potential of energy-efficient next-gen electronic memory October 13th, 2017

Rice U. lab surprised by ultraflat magnets: Researchers create atom-thick alloys with unanticipated magnetic properties October 13th, 2017

On the road to fire-free, lithium-ion batteries made with asphalt October 12th, 2017

Nanomedicine

Arrowhead Pharmaceuticals to Present Preclinical Data on ARO-AAT at The Liver Meeting(R) October 10th, 2017

Arrowhead to Present at Chardan Gene Therapy Conference October 3rd, 2017

'CRISPR-Gold' fixes Duchenne muscular dystrophy mutation in mice October 3rd, 2017

Nonviral CRISPR Delivery a Success October 2nd, 2017

Discoveries

Spin current detection in quantum materials unlocks potential for alternative electronics October 15th, 2017

Injecting electrons jolts 2-D structure into new atomic pattern: Berkeley Lab study is first to show potential of energy-efficient next-gen electronic memory October 13th, 2017

The secret to improving liquid crystal's mechanical performance: Better lubricating properties of lamellar liquid crystals could stem from changing the mobility of their structural dislocations by adding nanoparticles October 13th, 2017

Rice U. lab surprised by ultraflat magnets: Researchers create atom-thick alloys with unanticipated magnetic properties October 13th, 2017

Announcements

Spin current detection in quantum materials unlocks potential for alternative electronics October 15th, 2017

Quantum manipulation power for quantum information processing gets a boost: Improving the efficiency of quantum heat engines involves reducing the number of photons in a cavity, ultimately impacting quantum manipulation power October 14th, 2017

Injecting electrons jolts 2-D structure into new atomic pattern: Berkeley Lab study is first to show potential of energy-efficient next-gen electronic memory October 13th, 2017

The secret to improving liquid crystal's mechanical performance: Better lubricating properties of lamellar liquid crystals could stem from changing the mobility of their structural dislocations by adding nanoparticles October 13th, 2017

Military

On the road to fire-free, lithium-ion batteries made with asphalt October 12th, 2017

A dash of gold improves microlasers: The precious metal provides a 'nano' solution for improving disease detection, defense and cybersecurity applications October 9th, 2017

A flexible new platform for high-performance electronics September 29th, 2017

DNA triggers shape-shifting in hydrogels, opening a new way to make 'soft robots' September 21st, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project