Nanotechnology Now

Our NanoNews Digest Sponsors


Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Nano-hillocks: Of mountains and craters

Following bombardment with highly charged ions, nano-hillocks have formed in an area of localized melting. Atomic force microscope image.
Picture: HZDR
Following bombardment with highly charged ions, nano-hillocks have formed in an area of localized melting. Atomic force microscope image.

Picture: HZDR

Abstract:
n the field of nanotechnology, electrically-charged particles are frequently used as tools for surface modification. Researchers at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) and the TU Vienna were at last able to reconcile important issues concerning the effects of highly charged ions on surfaces.

Nano-hillocks: Of mountains and craters

Dresden, Germany | Posted on October 1st, 2012

Ion beams have been used for some time now for surface modification as ions are capable of carrying such high energies that a single particle alone can induce drastic changes to the surface under bombardment. Following careful examination, an international team of researchers was at last able to shed light on the reasons why sometimes craters and other times hillocks are forming as a result of this process. Their findings have recently been published in the scientific journal, Physical Review Letters.
Charge instead of speed

"If the goal is to deposit a maximum amount of energy on a tiny spot on the surface, it is of comparatively little use to simply bombard the surface with fast atoms," explains Prof. Friedrich Aumayr of the TU Vienna's Institute of Applied Physics. "Fast particles penetrate deep into the material thereby depositing their energy over a wide range." If, however, you first strip a large number of electrons from individual atoms and then allow these highly charged ions to collide with the material surface, the effects you get are quite dramatic as the energy that was previously required to ionize the atoms is now being released within a very small area of a few nanometers in diameter, and within an ultrashort time.

This can lead to melting of a very small volume of the material, loss of its orderly atomic structure, and, finally, its expansion. The large number of electronic excitations that result from the ion's interactions with the surface has a strong impact on the material and ultimately leads to the atoms being bumped out of position. The end-result is nano-hillock formation - the appearance of tiny protrusions on the material's surface. If the energy required to initiate melting of the material is insufficient, small holes or defects will form on or below the surface instead.

Elaborate experiments at the HZDR facility for highly charged ions were just as important to obtaining a detailed picture of the processes that take place at the material's surface as were computer simulations and extensive theoretical work. "At our new HZDR facility, we have the capabilities for deliberately forming nano-hillocks and nano-craters on surfaces. In close collaboration with the groups of our colleagues Friedrich Aumayr and Joachim Burgdörfer at the TU Vienna we succeeded to grasp the underlying physical mechanisms in more detail", explains Dr. Stefan Facsko. Egyptian physicist Dr. Ayman El-Said, who spent two years as a Humboldt Foundation fellow conducting research at HZDR, made substantial contributions to the current body of research in this field.
Assumptions confirmed

The scientists are calling their results the missing important piece of the puzzle to help them understand the interaction of highly charged ions with surfaces. By subjecting the sample to an acid treatment following ion bombardment, they are able to document the extent to which a surface is modified at given energies. The formation of nano-hillocks depends to a large extent on the ion beams' charge state and to a lesser extent on their velocity. The formation of craters, on the other hand, is dependent upon both the charge state and the kinetic energy of the ions. The Vienna and Dresden researchers had long suspected this and were now at last able to produce the necessary evidence obtained from their experiments conducted at the HZDR.

####

For more information, please click here

Contacts:
Dr. René Heller
Institute of Ion Beam Physics and Materials Research at HZDR
Phone: +49 351 260-3617


Dr. Christine Bohnet
Press Officer

49-351-260-2450
oder +49 160 969 288 56

Copyright © Helmholtz Association of German Research Centres

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Publication

Related News Press

News and information

Speedy ion conduction in solid electrolytes clears road for advanced energy devices May 5th, 2016

Engineers create a better way to boil water -- with industrial, electronics applications May 5th, 2016

Clues on the path to a new lithium battery technology: Charging produces highly reactive singlet oxygen in lithium air batteries May 5th, 2016

Unique nano-capsules promise the targeted drug delivery: Russian scientists created unique nano-capsules for the targeted drug delivery May 5th, 2016

Physics

An Experiment Seeks to Make Quantum Physics Visible to the Naked Eye May 3rd, 2016

Quantum sensors for high-precision magnetometry of superconductors May 3rd, 2016

Superfast light source made from artificial atom April 28th, 2016

Physicists detect the enigmatic spin momentum of light April 26th, 2016

Discoveries

Speedy ion conduction in solid electrolytes clears road for advanced energy devices May 5th, 2016

Engineers create a better way to boil water -- with industrial, electronics applications May 5th, 2016

Unique nano-capsules promise the targeted drug delivery: Russian scientists created unique nano-capsules for the targeted drug delivery May 5th, 2016

Molybdenum disulfide holds promise for light absorption: Rice researchers probe light-capturing properties of atomically thin MoS2 May 5th, 2016

Announcements

Speedy ion conduction in solid electrolytes clears road for advanced energy devices May 5th, 2016

Engineers create a better way to boil water -- with industrial, electronics applications May 5th, 2016

Clues on the path to a new lithium battery technology: Charging produces highly reactive singlet oxygen in lithium air batteries May 5th, 2016

Unique nano-capsules promise the targeted drug delivery: Russian scientists created unique nano-capsules for the targeted drug delivery May 5th, 2016

Tools

Oxford Instruments Asylum Research and McGill University Announce the McGill AFM Summer School and Workshop, May 12-13, 2016 May 4th, 2016

The intermediates in a chemical reaction photographed 'red-handed' Researchers at the UPV/EHU-University of the Basque Country have for the first time succeeded in imaging all the steps in a complex organic reaction and have resolved the mechanisms that explain it May 4th, 2016

New tool allows scientists to visualize 'nanoscale' processes May 4th, 2016

FEI Launches Apreo – Industry-Leading Versatile, High-Performance SEM: The Apreo SEM provides high-resolution surface information with excellent contrast, and the flexibility to accommodate a large range of samples, applications and conditions May 4th, 2016

Research partnerships

Speedy ion conduction in solid electrolytes clears road for advanced energy devices May 5th, 2016

The intermediates in a chemical reaction photographed 'red-handed' Researchers at the UPV/EHU-University of the Basque Country have for the first time succeeded in imaging all the steps in a complex organic reaction and have resolved the mechanisms that explain it May 4th, 2016

Making invisible physics visible: The Jayich Lab has created a new sensor technology that captures nanoscale images with high spatial resolution and sensitivity May 2nd, 2016

Cooling graphene-based film close to pilot-scale production April 30th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic