Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Ensysce Biosciences Inc. Receives Small Business Grant from NIH to Optimize Single Walled Carbon Nanotube Formulation for Therapeutic Delivery of siRNA

Abstract:
Ensysce Biosciences Inc. announced today they have received a SBIR award of roughly $300,000 to optimize the formulation of their single walled carbon nanotube (SWCNT)/siRNA complex for therapeutic delivery. These funds, along with the recent $1 million dollars that were raised in June and the State of Texas Emerging Technology Funds that had been awarded previously, will allow the finalization of the formulation prior to undertaking Investigational New Drug (IND) enabling studies.

Ensysce Biosciences Inc. Receives Small Business Grant from NIH to Optimize Single Walled Carbon Nanotube Formulation for Therapeutic Delivery of siRNA

Houston, TX | Posted on September 26th, 2012

siRNA is one of the most intriguing and promising approaches to cancer therapy, but adequate cellular delivery has been an issue. The SBIR award will aid the preclinical development of this ground breaking delivery technology. With completion of the studies, the Ensysce product will be poised to complete an IND application and bring SWCNT delivery of siRNA rapidly into clinical development.

Carbon nanotubes provide a means to deliver unmodified, large active molecular agents through natural barriers within the body and specifically into cancer cells. "The siRNA delivery into tumors by SWCNT and biological activity have been conclusively and repeatedly demonstrated in our animal studies. With the finalization of our formulation, our drug product will be taken through late preclinical development into human studies," said Dr. Kirkpatrick, CEO of Ensysce. "The studies funded by the NIH will complete the last stage of our product selection and we will move in to the safety studies required by the FDA to enter clinical trials."

Ensysce is located in the Biotechnology Commercialization Center in the Texas Medical Center, a site that aids its research collaborations with Rice University. "The research by Ensysce continues to demonstrate the utility of this approach for siRNA delivery," said Dr. R. Bruce Weisman, Professor of Chemistry at Rice University. "Ensysce is leading the way in showing that carbon nanotubes can effectively deliver these macromolecules and provide biological activity in tumor models."

####

About Ensysce Biosciences Inc.
Ensysce Biosciences, a Houston, TX-based nanotechnology company, is focused on the use of carbon nanotubes for therapeutics in the area of cancer treatment. The company has an extensive carbon nanotube-related, worldwide intellectual property portfolio, including IP developed at Rice University by the late Nobel Prize winner Dr. Rick Smalley.

For more information, please click here

Contacts:
Ensysce Biosciences Inc.
Dr. D. Lynn Kirkpatrick
713-790-0080

Copyright © Business Wire

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Silk could improve sensitivity, flexibility of wearable body sensors August 20th, 2017

The power of perovskite: OIST researchers improve perovskite-based technology in the entire energy cycle, from solar cells harnessing power to LED diodes to light the screens of future electronic devices and other lighting applications August 18th, 2017

Gold nanostars and immunotherapy vaccinate mice against cancer: New treatment cures, vaccinates mouse in small proof-of-concept study August 18th, 2017

Researchers printed graphene-like materials with inkjet August 17th, 2017

Govt.-Legislation/Regulation/Funding/Policy

Researchers printed graphene-like materials with inkjet August 17th, 2017

Freeze-dried foam soaks up carbon dioxide: Rice University scientists lead effort to make novel 3-D material August 16th, 2017

2-faced 2-D material is a first at Rice: Rice University materials scientists create flat sandwich of sulfur, molybdenum and selenium August 14th, 2017

Engineers pioneer platinum shell formation process – and achieve first-ever observation August 11th, 2017

Nanotubes/Buckyballs/Fullerenes/Nanorods

Silk could improve sensitivity, flexibility of wearable body sensors August 20th, 2017

Regulation of two-dimensional nanomaterials: New driving force for lithium-ion batteries July 26th, 2017

Killing cancer in the heat of the moment: A new method efficiently transfers genes into cells, then activates them with light. This could lead to gene therapies for cancers July 9th, 2017

Tests show no nanotubes released during utilisation of nanoaugmented materials June 9th, 2017

Announcements

Silk could improve sensitivity, flexibility of wearable body sensors August 20th, 2017

The power of perovskite: OIST researchers improve perovskite-based technology in the entire energy cycle, from solar cells harnessing power to LED diodes to light the screens of future electronic devices and other lighting applications August 18th, 2017

Gold nanostars and immunotherapy vaccinate mice against cancer: New treatment cures, vaccinates mouse in small proof-of-concept study August 18th, 2017

Researchers printed graphene-like materials with inkjet August 17th, 2017

Patents/IP/Tech Transfer/Licensing

Argonne National Laboratory’s Continuous ALD Technology Licensed Exclusively to Forge Nano July 7th, 2017

Aculon Expands NanoProof® Product Line for Electronics Waterproofing Technology: With growing market opportunities Aculon Launches NanoProof® 8 with Push Through Connectivity™ and NanoProof® DAB a syringe application May 30th, 2017

NREL’s Advanced Atomic Layer Deposition Enables Lithium-Ion Battery Technology: May 10th, 2017

Forge Nano 2017: 1st Quarter Media Update April 20th, 2017

Grants/Sponsored Research/Awards/Scholarships/Gifts/Contests/Honors/Records

Two Scientists Receive Grants to Develop New Materials: Chad Mirkin and Monica Olvera de la Cruz recognized by Sherman Fairchild Foundation August 16th, 2017

2-faced 2-D material is a first at Rice: Rice University materials scientists create flat sandwich of sulfur, molybdenum and selenium August 14th, 2017

Moving at the Speed of Light: University of Arizona selected for high-impact, industrial demonstration of new integrated photonic cryogenic datalink for focal plane arrays: Program is major milestone for AIM Photonics August 10th, 2017

Landscapes give latitude to 2-D material designers: Rice University, Oak Ridge scientists show growing atom-thin sheets on cones allows control of defects August 9th, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project