Nanotechnology Now

Our NanoNews Digest Sponsors


Heifer International

Wikipedia Affiliate Button

Home > Press > Ensysce Biosciences Inc. Receives Small Business Grant from NIH to Optimize Single Walled Carbon Nanotube Formulation for Therapeutic Delivery of siRNA

Abstract:
Ensysce Biosciences Inc. announced today they have received a SBIR award of roughly $300,000 to optimize the formulation of their single walled carbon nanotube (SWCNT)/siRNA complex for therapeutic delivery. These funds, along with the recent $1 million dollars that were raised in June and the State of Texas Emerging Technology Funds that had been awarded previously, will allow the finalization of the formulation prior to undertaking Investigational New Drug (IND) enabling studies.

Ensysce Biosciences Inc. Receives Small Business Grant from NIH to Optimize Single Walled Carbon Nanotube Formulation for Therapeutic Delivery of siRNA

Houston, TX | Posted on September 26th, 2012

siRNA is one of the most intriguing and promising approaches to cancer therapy, but adequate cellular delivery has been an issue. The SBIR award will aid the preclinical development of this ground breaking delivery technology. With completion of the studies, the Ensysce product will be poised to complete an IND application and bring SWCNT delivery of siRNA rapidly into clinical development.

Carbon nanotubes provide a means to deliver unmodified, large active molecular agents through natural barriers within the body and specifically into cancer cells. "The siRNA delivery into tumors by SWCNT and biological activity have been conclusively and repeatedly demonstrated in our animal studies. With the finalization of our formulation, our drug product will be taken through late preclinical development into human studies," said Dr. Kirkpatrick, CEO of Ensysce. "The studies funded by the NIH will complete the last stage of our product selection and we will move in to the safety studies required by the FDA to enter clinical trials."

Ensysce is located in the Biotechnology Commercialization Center in the Texas Medical Center, a site that aids its research collaborations with Rice University. "The research by Ensysce continues to demonstrate the utility of this approach for siRNA delivery," said Dr. R. Bruce Weisman, Professor of Chemistry at Rice University. "Ensysce is leading the way in showing that carbon nanotubes can effectively deliver these macromolecules and provide biological activity in tumor models."

####

About Ensysce Biosciences Inc.
Ensysce Biosciences, a Houston, TX-based nanotechnology company, is focused on the use of carbon nanotubes for therapeutics in the area of cancer treatment. The company has an extensive carbon nanotube-related, worldwide intellectual property portfolio, including IP developed at Rice University by the late Nobel Prize winner Dr. Rick Smalley.

For more information, please click here

Contacts:
Ensysce Biosciences Inc.
Dr. D. Lynn Kirkpatrick
713-790-0080

Copyright © Business Wire

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

New lithium-oxygen battery greatly improves energy efficiency, longevity: New chemistry could overcome key drawbacks of lithium-air batteries July 26th, 2016

Scientists test nanoparticle drug delivery in dogs with osteosarcoma July 26th, 2016

Nanometrics Reports Second Quarter 2016 Financial Results July 26th, 2016

Ultrasensitive sensor using N-doped graphene July 26th, 2016

Govt.-Legislation/Regulation/Funding/Policy

New lithium-oxygen battery greatly improves energy efficiency, longevity: New chemistry could overcome key drawbacks of lithium-air batteries July 26th, 2016

Scientists test nanoparticle drug delivery in dogs with osteosarcoma July 26th, 2016

Ultrasensitive sensor using N-doped graphene July 26th, 2016

Integration of novel materials with silicon chips makes new 'smart' devices possible July 25th, 2016

Nanotubes/Buckyballs/Fullerenes

Easier, faster, cheaper: A full-filling approach to making nanotubes of consistent quality: Approach opens a straightforward route for engineering the properties of single-wall carbon nanotubes July 19th, 2016

Sensing trouble: A new way to detect hidden damage in bridges, roads: University of Delaware engineers devise new method for monitoring structural health July 8th, 2016

Wireless, wearable toxic-gas detector: Inexpensive sensors could be worn by soldiers to detect hazardous chemical agents July 4th, 2016

Nanotubes' 'stuffing' as is: A scientist from the Lomonosov Moscow State University studied the types of carbon nanotubes' 'stuffing' June 2nd, 2016

Announcements

New lithium-oxygen battery greatly improves energy efficiency, longevity: New chemistry could overcome key drawbacks of lithium-air batteries July 26th, 2016

Scientists test nanoparticle drug delivery in dogs with osteosarcoma July 26th, 2016

Nanometrics Reports Second Quarter 2016 Financial Results July 26th, 2016

Ultrasensitive sensor using N-doped graphene July 26th, 2016

Patents/IP/Tech Transfer/Licensing

Integration of novel materials with silicon chips makes new 'smart' devices possible July 25th, 2016

Research team led by NUS scientists develop plastic flexible magnetic memory device: Novel technique to implant high-performance magnetic memory chip on a flexible plastic surface without compromising performance July 21st, 2016

New nanoscale technologies could revolutionize microscopes, study of disease July 20th, 2016

Keystone Nano selected as a top scoring company by NCI investor review panel July 19th, 2016

Grants/Awards/Scholarships/Gifts/Contests/Honors/Records

Scientists test nanoparticle drug delivery in dogs with osteosarcoma July 26th, 2016

Ultra-flat circuits will have unique properties: Rice University lab studies 2-D hybrids to see how they differ from common electronics July 25th, 2016

Accurate design of large icosahedral protein nanocages pushes bioengineering boundaries: Scientists used computational methods to build ten large, two-component, co-assembling icosahedral protein complexes the size of small virus coats July 25th, 2016

New reaction for the synthesis of nanostructures July 21st, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic