Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Nanotechnology device aims to prevent malaria deaths through rapid diagnosis

Abstract:
A pioneering mobile device using cutting-edge nanotechnology to rapidly detect malaria infection and drug resistance could revolutionise how the disease is diagnosed and treated.

Nanotechnology device aims to prevent malaria deaths through rapid diagnosis

London, UK | Posted on September 25th, 2012

Around 800,000 people die from malaria each year after being bitten by mosquitoes infected with malaria parasites. Signs that the parasite is developing resistance to the most powerful anti-malarial drugs in south-east Asia and sub-Saharan Africa mean scientists are working to prevent the drugs becoming ineffective.

The €5.2million (£4million) Nanomal project - launched today - is planning to provide an affordable hand-held diagnostic device to swiftly detect malaria infection and parasites' drug resistance. It will allow healthcare workers in remote rural areas to deliver effective drug treatments to counter resistance more quickly, potentially saving lives.

The device - the size and shape of a mobile phone - will use a range of latest proven nanotechnologies to rapidly analyse the parasite DNA from a blood sample. It will then provide a malaria diagnosis and comprehensive screening for drug susceptibility in less than 20 minutes, while the patient waits. With immediately available information about the species of parasite and its potential for drug resistance, a course of treatment personally tailored to counter resistance can be given.

Currently for malaria diagnosis, blood samples are sent to a central referral laboratory for drug resistance analysis, requiring time as well as specialised and expensive tests by skilled scientists. Additionally, confirmation of malaria is often not available where patients present with fever. Very often, drug treatments are prescribed before the diagnosis and drug resistance are confirmed, and may not be effective. Being able to treat effectively and immediately will prevent severe illness and save lives.

The Nanomal consortium is being led by St George's, University of London, which is working with UK handheld diagnostics and DNA sequencing specialist QuantuMDx Group and teams at the University of Tuebingen in Germany and the Karolinska Institute in Sweden. It was set up in response to increasing signs that the malaria parasite is mutating to resist the most powerful class of anti-malaria drugs, artemisinins. The European Commission has awarded €4million (£3.1million) to the project.

Nanomal lead Professor Sanjeev Krishna, from St George's, said: "Recent research suggests there's a real danger that artemisinins could eventually become obsolete, in the same way as other anti-malarials. New drug treatments take many years to develop, so the quickest and cheapest alternative is to optimise the use of current drugs. The huge advances in technology are now giving us a tremendous opportunity to do that and to avoid people falling seriously ill or dying unnecessarily."

QuantuMDx's CEO Elaine Warburton said: "Placing a full malaria screen with drug resistance status in the palm of a health professional's hand will allow instant prescribing of the most effective anti-malaria medication for that patient. Nanomal's rapid, low-cost test will further support the global health challenge to eradicate malaria."

The handheld device will take a finger prick of blood, extract the malarial DNA and then detect and sequence the specific mutations linked to drug resistance, using a nanowire biosensor. The chip electrically detects the DNA sequences and converts them directly into binary code, the universal language of computers. The binary code can then be readily analysed and even shared, via wireless or mobile networks, with scientists for real-time monitoring of disease patterns.

The device should provide the same quality of result as a referral laboratory, at a fraction of the time and cost. Each device could cost about the price of a smart phone initially, but may be issued for free in developing countries. A single-test cartridge will be around €13 (£10) initially, but the aim is to reduce this cost to ensure affordability in resource-limited settings.

In addition to improving immediate patient outcomes, the project will allow the researchers to build a better picture of levels of drug resistance in stricken areas. It will also give them information on population impacts of anti-malarial interventions.

Clinical trials of the device are expected to begin within three years, after which it will be brought to market. The technology could be adapted afterwards for use with other infectious diseases.

Notes for editors:

For more information or interviews, contact Gordon Coutts in the St George's, University of London communications office on 0208 725 1139 or at

The Nanomal website will be live on Wednesday 26 September - www.nanomal.org

####

About St George's, University of London
St George’s, University of London (SGUL), established in 1733, is distinctive as the UK’s only independent medical and healthcare higher education institution. It benefits from strong links with the healthcare profession, including a shared site with St George’s Healthcare NHS Trust in Tooting, south west London.

SGUL is dedicated to the education and training of doctors, nurses, midwives, physician’s assistants, paramedics, physiotherapists, radiographers, social workers, healthcare and biomedical scientists. It attracts around 6,000 students, some of whom are taught in conjunction with Kingston University.

Research at SGUL has a UK and international focus and aims to improve prevention, diagnosis and treatment of disease in areas including infection and immunity, heart disease and stroke, and cell signalling. It also aims to enhance understanding of public health and epidemiology, clinical genetics, and social care sciences.

About QuantuMDx Group (www.quantumdx.com):

QuantuMDx Group is one of the UK’s most promising medical device companies who are developing a range of handheld diagnostic devices specifically addressing humanitarian health challenges. The devices include the world’s first handheld DNA sequencer which is currently focused on rapidly detecting and monitoring emerging drug resistance in infectious diseases. Based in the UK, QMDx has offices in the USA, Singapore and South Africa and enjoys a wide range of global industry-academic collaborations.

For more information, please click here

Contacts:
Gordon Coutts
+44 (0) 20 8725 1139

Copyright © AlphaGalileo

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Simulating magnetization in a Heisenberg quantum spin chain April 5th, 2024

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Nanomedicine

New micromaterial releases nanoparticles that selectively destroy cancer cells April 5th, 2024

Good as gold - improving infectious disease testing with gold nanoparticles April 5th, 2024

Researchers develop artificial building blocks of life March 8th, 2024

Curcumin nanoemulsion is tested for treatment of intestinal inflammation: A formulation developed by Brazilian researchers proved effective in tests involving mice March 8th, 2024

Discoveries

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

Chemical reactions can scramble quantum information as well as black holes April 5th, 2024

New micromaterial releases nanoparticles that selectively destroy cancer cells April 5th, 2024

Utilizing palladium for addressing contact issues of buried oxide thin film transistors April 5th, 2024

Announcements

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

Tools

First direct imaging of small noble gas clusters at room temperature: Novel opportunities in quantum technology and condensed matter physics opened by noble gas atoms confined between graphene layers January 12th, 2024

New laser setup probes metamaterial structures with ultrafast pulses: The technique could speed up the development of acoustic lenses, impact-resistant films, and other futuristic materials November 17th, 2023

Ferroelectrically modulate the Fermi level of graphene oxide to enhance SERS response November 3rd, 2023

The USTC realizes In situ electron paramagnetic resonance spectroscopy using single nanodiamond sensors November 3rd, 2023

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project