Nanotechnology Now

Our NanoNews Digest Sponsors


Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Therapeutic impact of cell transplantation aided by magnetic factor

Abstract:
Two studies in the current issue of Cell Transplantation (21:6), now freely available on-line at www.ingentaconnect.com/content/cog/ct/, demonstrate how the use of magnetic particles are a factor that can positively impact on the targeted delivery of transplanted stem cells and to also provide better cell retention.

Therapeutic impact of cell transplantation aided by magnetic factor

Putnam Valley, NY | Posted on September 24th, 2012

A research team from the University of British Columbia used focused magnetic stem cell targeting to improve the delivery and transport of mensenchymal stem cells to the retinas of test rats while researchers from Cedars-Sinai Heart Institute (Los Angeles) injected magnetically enhanced cardiac stem cells to guide the cells to their target to increase cell retention and therapeutic benefit in rat models of ischemic/reperfusion injury.

According to study co-author Dr. Kevin Gregory-Evans, MD, PhD, of the Centre for Macular Degeneration at the University of British Columbia, degeneration of the retina - the cause of macular degeneration as well as other eye diseases - accounts for most cases of blindness in the developed world. To date, the transplantation of mensenchymal stem cells to the damaged retina has had "limited success" because the cells reaching the retina have been in "very low numbers and in random distribution."

Seeking to improve stem cell transplantation to the retina, the researchers magnetized rat mesenchymal stem cells (MSCs) using superparamagnetic iron oxide nanoparticles (SPIONs). Via an externally placed magnet, they directed the SPION enhanced cells to the peripheral retinas of the test animals.

"Our results showed that large numbers of blood-borne magnetic MSCs can be targeted to specific retinal locations and produce therapeutically useful biochemical changes in the target tissue," explained Gregory-Evans. "Such an approach would be optimal in focal tissue diseases of the outer retina, such as age-related macular degeneration."

Citation: Cheng, K.; Malliaras, K.; Li, T.-S.; Sun, B.; Houde, C.; Galang, G.; Smith, J.; Matsushita, N.; Marbán, E. Magnetic Enhancement of Cell Retention, Engraftment, and Functional Benefit After Intracoronary Delivery of Cardiac-Derived Stem Cells in a Rat Model of Ischemia/Reperfusion. Cell Transplant. 21(6):1121-1135; 2012.

The Coeditor-in-chief's for CELL TRANSPLANTATION are at the Diabetes Research Institute, University of Miami Miller School of Medicine and Center for Neuropsychiatry, China Medical University Hospital, TaiChung, Taiwan. Contact, Camillo Ricordi, MD at or Shinn-Zong Lin, MD, PhD at or David Eve, PhD at

News release by Florida Science Communications www.sciencescribe.net

####

For more information, please click here

Contacts:
David Eve


Dr. Eduardo Marban, MD, PhD
Cedars of Sinai Heart Institute
8700 Beverly Blvd., 1090 Davis Research Building
Los Angeles, CA 90048
Tel. 310-423-7557
Fax. 310- 423- 7637

Copyright © Cell Transplantation Center of Excellence for Aging and Brai

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Superheroes are real: Ultrasensitive nonlinear metamaterials for data transfer June 25th, 2016

Russian physicists create a high-precision 'quantum ruler': Physicists have devised a method for creating a special quantum entangled state June 25th, 2016

Nanoscientists develop the 'ultimate discovery tool': Rapid discovery power is similar to what gene chips offer biology June 25th, 2016

Ultrathin, flat lens resolves chirality and color: Multifunctional lens could replace bulky, expensive machines June 25th, 2016

Nanomedicine

Nanoscientists develop the 'ultimate discovery tool': Rapid discovery power is similar to what gene chips offer biology June 25th, 2016

Nanotechnology and math deliver two-in-one punch for cancer therapy resistance June 24th, 2016

Self-assembling icosahedral protein designed: Self-assembling icosahedral protein designed June 22nd, 2016

Stealth nanocapsules kill Chagas parasites in mouse models June 22nd, 2016

Discoveries

Superheroes are real: Ultrasensitive nonlinear metamaterials for data transfer June 25th, 2016

Russian physicists create a high-precision 'quantum ruler': Physicists have devised a method for creating a special quantum entangled state June 25th, 2016

Nanoscientists develop the 'ultimate discovery tool': Rapid discovery power is similar to what gene chips offer biology June 25th, 2016

Ultrathin, flat lens resolves chirality and color: Multifunctional lens could replace bulky, expensive machines June 25th, 2016

Announcements

Superheroes are real: Ultrasensitive nonlinear metamaterials for data transfer June 25th, 2016

Russian physicists create a high-precision 'quantum ruler': Physicists have devised a method for creating a special quantum entangled state June 25th, 2016

Nanoscientists develop the 'ultimate discovery tool': Rapid discovery power is similar to what gene chips offer biology June 25th, 2016

Ultrathin, flat lens resolves chirality and color: Multifunctional lens could replace bulky, expensive machines June 25th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic