Nanotechnology Now







Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Ultra fast optical amplifier: silicon and erbium on one chip for the first time

Image of the chip including silicon optical waveguide (SOI: silicon on insulator) as well as erbium-doped aluminium oxyde.
Image of the chip including silicon optical waveguide (SOI: silicon on insulator) as well as erbium-doped aluminium oxyde.

Abstract:
Within optical microchips, light finds its way through channels, waveguides, made of silicon. Light from a glass fiber, for example, is led through a structure of optical channels with splitters and couplers. Silicon is the workhorse for this, but it is still passive conduction of light, with some losses as well. To be able to amplify the signal, or even to include a light source on the chip, extra steps are necessary. Other types of semiconductors, like Gallium Arsenide, are an option. But materials doped with the rare earth material erbium have good amplification properties as well.

Ultra fast optical amplifier: silicon and erbium on one chip for the first time

Enschede, Netherlands | Posted on September 22nd, 2012

Until now, no chip existed, on which both silicon and erbium-doped material were integrated. In her thesis, PhD candidate Laura Agazzi of the University of Twente demonstrates a working chip for the first time. It will be able to amplify light at speeds up to 170 Gbit/sec. The prototype chip has a signal gain of 7.2 decibel at infrared light (1533 nanometer).

The prototype is a starting point, but the results are very promising. One of the possibilities is a laser with an extremely narrow linewidth of 1.7 kHz. "In any application that needs emission or amplification of light, this integration of both materials is useful. It is not limited to telecom. You could use these chips for sensor purposes, for tracing extremely small particles, for example," Agazzi adds.

Trade-off

Laura Agazzi has investigated the optical properties of aluminium oxide doped with erbium, to understand the mechanisms that influence the amplification properties in a negative way. One of these is called energy-transfer up conversion (ETU), which is detrimental for good functionality."If you want a large amplification, you would like to put many erbium ions in the material, this in turn can cause a higher ETU. There are possibilities in adapting the host material, causing less interaction of the ions. With my models, I have gained better insight in these and other mechanisms that lower the amplification.

Laura Agazzi (1983, Vimercate, Italie) conducted her research within the Integrated Optical Microsystems (IOMS) of prof Markus Pollnau, which is part of the MESA+ Institute for Nanotechnology of the University of Twente. On Sep 20 she successfully defended her thesis Spectroscopic Excitation and Quenching Processes in Rare-Earth-Ion-Doped Al2O3 and their Impact on Amplifier and Laser Performance. Her thesis, or a summary, are available digitally.

####

For more information, please click here

Contacts:
Wiebe van der Veen
+31612185692

Copyright © AlphaGalileo

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Advantest to Exhibit at SEMICON Korea in Seoul, South Korea February 4-6 Showcasing Broad Portfolio of Semiconductor Products, Technologies and Solutions January 29th, 2015

Park Systems Announces Innovations in Bio Cell Analysis with the Launch of Park NX-Bio, the only 3-in-1 Imaging Nanoscale Tool Available for Life Science Researchers January 29th, 2015

2015 Nanonics Image Contest January 29th, 2015

Iranian Scientists Use MOFs to Eliminate Dye Pollutants January 29th, 2015

Chip Technology

Creating new materials with quantum effects for electronics January 29th, 2015

Advantest to Exhibit at SEMICON Korea in Seoul, South Korea February 4-6 Showcasing Broad Portfolio of Semiconductor Products, Technologies and Solutions January 29th, 2015

Nanometrics to Present at the Stifel 2015 Technology, Internet and Media Conference January 27th, 2015

New pathway to valleytronics January 27th, 2015

Optical computing/ Photonic computing

New signal amplification process set to transform communications, imaging, computing: UC San Diego researchers discover a mechanism to amplify signals in optoelectronic systems that is far more efficient than standard processes January 21st, 2015

Rice's Naomi Halas to direct Smalley Institute: Optics pioneer will lead Rice's multidisciplinary science institute January 15th, 2015

Graphene plasmons go ballistic: Graphene combined with the insulting power of boron nitride enables light control in tiny circuits with dramatically reduced energy loss January 12th, 2015

High photosensitivity 2D-few-layered molybdenum diselenide phototransistors December 8th, 2014

Discoveries

Creating new materials with quantum effects for electronics January 29th, 2015

Los Alamos Develops New Technique for Growing High-Efficiency Perovskite Solar Cells: Researchersí crystal-production insights resolve manufacturing difficulty January 29th, 2015

Iranian Scientists Use MOFs to Eliminate Dye Pollutants January 29th, 2015

Made-in-Singapore rapid test kit detects dengue antibodies from saliva: IBN's MedTech innovation simplifies diagnosis of infectious diseases January 29th, 2015

Announcements

Advantest to Exhibit at SEMICON Korea in Seoul, South Korea February 4-6 Showcasing Broad Portfolio of Semiconductor Products, Technologies and Solutions January 29th, 2015

Park Systems Announces Innovations in Bio Cell Analysis with the Launch of Park NX-Bio, the only 3-in-1 Imaging Nanoscale Tool Available for Life Science Researchers January 29th, 2015

2015 Nanonics Image Contest January 29th, 2015

Iranian Scientists Use MOFs to Eliminate Dye Pollutants January 29th, 2015

Photonics/Optics/Lasers

The laser pulse that gets shorter all by itself: Ultrashort laser pulses have become an indispensable tool for atomic and molecular research; A new technology makes creating short infrared pulses easy and cheap January 27th, 2015

New pathway to valleytronics January 27th, 2015

Scientists 'bend' elastic waves with new metamaterials that could have commercial applications: Materials could benefit imaging and military enhancements such as elastic cloaking January 23rd, 2015

Teijin to Participate in Nano Tech 2015 January 22nd, 2015

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2015 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE