Nanotechnology Now







Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > The search for new materials for hydrogen storage

Four types of materials studied in the dissertation: fullerene C60, carbon nanotubes, metal-organic frameworks (MOFs), and fullerene C60 encapsulated inside carbon nanotubes.
Four types of materials studied in the dissertation: fullerene C60, carbon nanotubes, metal-organic frameworks (MOFs), and fullerene C60 encapsulated inside carbon nanotubes.

Abstract:
Hydrogen is the ideal fuel for new types of fuel cell vehicles, but one problem is how to store hydrogen. In his doctoral dissertation Serhiy Luzan studies new types of materials for hydrogen storage. He also shows that new materials with interesting properties can be synthesized by the reaction of hydrogen with carbon nano-structured materials. The dissertation will be publicly defended on September 28 at Umeň University in Sweden.

The search for new materials for hydrogen storage

Umeň, Sweden | Posted on September 21st, 2012

New car engines that run on hydrogen produce only water as exhaust and are three to four times more efficient than ordinary internal combustion engines. Just one "small" problem is hampering the development of hydrogen-powered vehicles: there is no good method for storing sufficient amounts of hydrogen, as it is a gas of very low density.

Serhiy Luzan devotes the first part of his dissertation to studies of hydrogen storage in exciting new types of materials: metal-organic frameworks (MOFs). They consist of zinc- and cobalt-based metal clusters linked together via organic linkers, and they are extremely porous. One gram of MOF has a hydrogen-absorbing surface that is larger than a football field! Dozens of new MOF materials are synthesized each year, which is highly promising for the next generation of hydrogen storage materials.

Serhiy studied the hydrogen absorption of several new MOFs and researched the effects of different surface areas, pore volumes, and pore forms on the hydrogen storage parameters. MOFs can store record amounts of hydrogen at very low temperatures, but the hydrogen capacity at room temperature is not good enough. Luzan therefore studied new methods to enhance this capacity. Addition of metal catalysts has previously been reported to improve hydrogen storage considerably.

"But in my study, the effect of metal catalysts addition on hydrogen absorption in MOFs was not confirmed," says Serhihy Luzan.

Hydrogen is of interest not only as a fuel but also for chemical modification of nano-structured carbon materials, such as carbon nanotubes, fullerenes, and graphene. Graphene is a single layer of carbon atoms. Carbon nanotubes also consist of pure carbon, in the form of graphene layers rolled into a cylinder. Fullerene, C60, consist of sixty carbon atoms arranged in five- or six-vertices figures, just like the pattern on a soccer ball. There are carbon materials that are stronger than steel, conduct current better than copper, and diffuse heat better than diamond.

In the second part of the dissertation Luzan describes the materials he created by the reaction of hydrogen with fullerenes and carbon nanotubes.

Luzan studied the reaction between fullerene C60 and hydrogen at elevated temperatures and hydrogen pressures, with and without the addition of metal catalysts. The reaction resulted in the formation of hydrogenated fullerenes, C60Hx. Upon extended hydrogen treatment, the fullerene structure fragmented and collapsed. This outcome shows that it is possible to break down fullerenes stepwise into smaller cup-like molecules, which are stabilized by hydrogen atoms. This is a structure that was previously difficult to achieve.

"With this method, we should be able to use fullerenes as a relatively inexpensive source material for creating new molecules that hopefully would retain interesting properties from the original carbon nano-material," says Serhihy Luzan.

Hydrogenated graphene (graphane) is expected to be an ideal material for new carbon-based electronics, but graphane is difficult to synthesize by a direct reaction between graphene and hydrogen. It is much easier first to hydrogenate carbon nanotubes and then to cut them along the tube axis into so-called nanoribbons, which have hydrogen covalently bonded to the surface.

Luzan's experiments showed that the reaction between single-wall carbon nanotubes and hydrogen is possible if a suitable catalyst is used, and he was able to observe that some of the nanotubes were converted to graphene or graphane nanoribbons.

About the public defense:

On Friday, September 28, Serhiy Luzan, Department of Physics, will defend his thesis titled: Materials for hydrogen storage and synthesis of new materials by hydrogenation. Title in Swedish: Material f÷r vńtelagring och syntes av nya material genom hydrering.

The public defense will take place at 1:00, p.m. in room N300.

The external examiner is Prof. Dr. Yaroslav Filinchuk, Institute of Condensed Matter and Nanosciences, UniversitÚ Catholique de Louvain, Louvain-la-Neuve, Belgium.

Read the whole or parts of the dissertation at:

urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-58663

####

For more information, please click here

Contacts:
David Meyers
+46 (0)90- 786 98 95

Copyright © AlphaGalileo

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Nanotech-enabled moisturizer speeds healing of diabetic skin wounds: Spherical nucleic acids silence gene that interferes with wound healing April 24th, 2015

Fast and accurate 3-D imaging technique to track optically trapped particles April 24th, 2015

Pseudoparticles travel through photoactive material: KIT scientists measure important process in the conversion of light energy -- publication in Nature Communications April 24th, 2015

Scientists Use Nanoscale Building Blocks and DNA 'Glue' to Shape 3D Superlattices: New approach to designing ordered composite materials for possible energy applications April 23rd, 2015

Graphene

New class of 3D-printed aerogels improve energy storage April 22nd, 2015

'Holey' graphene for energy storage: Charged holes in graphene increase energy storage capacity April 22nd, 2015

Dispersion Stability Test Aids Characterisation of Functionalised Graphene Materials April 21st, 2015

Yale-NUS, NUS and UT Austin researchers establish theoretical framework for graphene physics: Making strides towards using graphene to create new electronic devices April 20th, 2015

Nanotubes/Buckyballs/Fullerenes

SouthWest NanoTechnologies CEO Dave Arthur to Speak at NanoBCA DC Roundtable on May 19 in Washington DC April 20th, 2015

How to maximize the superconducting critical temperature in a molecular superconductor: International team led by Tohoku University opens new route for discovering high Tc superconductors April 19th, 2015

Nanotubes with two walls have singular qualities: Rice University lab calculates unique electronic qualities of double-walled carbon nanotubes April 16th, 2015

MIT sensor detects spoiled meat: Tiny device could be incorporated into 'smart packaging' to improve food safety April 15th, 2015

Discoveries

Nanotech-enabled moisturizer speeds healing of diabetic skin wounds: Spherical nucleic acids silence gene that interferes with wound healing April 24th, 2015

Fast and accurate 3-D imaging technique to track optically trapped particles April 24th, 2015

Pseudoparticles travel through photoactive material: KIT scientists measure important process in the conversion of light energy -- publication in Nature Communications April 24th, 2015

Surface matters: Huge reduction of heat conduction observed in flat silicon channels April 23rd, 2015

Announcements

Nanotech-enabled moisturizer speeds healing of diabetic skin wounds: Spherical nucleic acids silence gene that interferes with wound healing April 24th, 2015

Fast and accurate 3-D imaging technique to track optically trapped particles April 24th, 2015

Pseudoparticles travel through photoactive material: KIT scientists measure important process in the conversion of light energy -- publication in Nature Communications April 24th, 2015

Surface matters: Huge reduction of heat conduction observed in flat silicon channels April 23rd, 2015

Energy

Pseudoparticles travel through photoactive material: KIT scientists measure important process in the conversion of light energy -- publication in Nature Communications April 24th, 2015

Scientists Use Nanoscale Building Blocks and DNA 'Glue' to Shape 3D Superlattices: New approach to designing ordered composite materials for possible energy applications April 23rd, 2015

'Holey' graphene for energy storage: Charged holes in graphene increase energy storage capacity April 22nd, 2015

Expanding the reach of metallic glass April 22nd, 2015

Automotive/Transportation

Nanoparticles Used to Improve Mechanical, Thermal Properties of Cellulose Fibers April 23rd, 2015

'Holey' graphene for energy storage: Charged holes in graphene increase energy storage capacity April 22nd, 2015

Expanding the reach of metallic glass April 22nd, 2015

Nanocomposites Play Effective Role in Production of Smart Fibers April 18th, 2015

Fuel Cells

Expanding the reach of metallic glass April 22nd, 2015

Newly-Developed Nanocatalysts Increase Performance of Fuel Cells April 16th, 2015

Cobalt film a clean-fuel find: Rice University discovery is efficient, robust at drawing hydrogen and oxygen from water April 15th, 2015

Research could usher in next generation of batteries, fuel cells University of South Carolina and Clemson reseachers uncover clean interfaces April 10th, 2015

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project