Nanotechnology Now

Our NanoNews Digest Sponsors



Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > Photocatalysis as an energy source: Zn-Ga-O nanocubes improve conversion rate

Chinese researchers have developed a new nanomaterial to improve the chemical conversion rate in photocatalytic energy systems.
Chinese researchers have developed a new nanomaterial to improve the chemical conversion rate in photocatalytic energy systems.

Abstract:
As global energy demand continues to grow, the need to find a carbon-neutral and sustainable energy source for future generations has become imperative. An especially attractive solution is to store solar energy in the form of chemical fuel via artificial photosynthesis to convert carbon dioxide into hydrocarbons.

Photocatalysis as an energy source: Zn-Ga-O nanocubes improve conversion rate

Germany | Posted on September 20th, 2012

To apply this photocatalysis technique in practical applications, it is useful to synthesize semiconductor photocatalysts with specific facets that induce high reactive activities and high reactive selectivity. Attempts to deliberately fabricate such materials are made more difficult by the thermodynamic growth mechanisms of the crystals. Up until now, the solution to this problem has been the selective absorption of surfactants or ions on high-energy facets to suppress the growth rate along their axes.

Now, Dr. S. C. Yan and co-workers, working at Nanjing University, China, have found a simple route to synthesize ZnGa2O4 nanocubes with the {100} facets exposed. Using this ZnGa2O4 nanocube as a photocatalyst, under UV light irradiation CO2 was successfully converted into a hydrocarbon, CH4.

Usually, for a semiconductor photocatalyst, a light-hole effective mass induces high hole mobility, which is beneficial for improving the photocatalytic reaction. However, Yan et al. used the hole effective mass to check the photocatalytic activities of a given single-crystal photocatalyst for the first time. Their work may open a novel route to find the more efficient photocatalyst for driving conversion from solar to chemical energy. A future effort is focusing on the discovery of visible-light-response photocatalyst with sufficiently light hole effective mass.

####

For more information, please click here

Copyright © Wiley-VCH Materials Science Journals

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Link to the original paper on Wiley Online Library:

Related News Press

Chemistry

Lawrence Livermore researchers develop efficient method to produce nanoporous metals November 25th, 2014

News and information

Renishaw receives Queen's Award for spectroscopy developments November 25th, 2014

JPK reports on the use of AFM and the CellHesion module to study plant cells at the University of Queensland November 25th, 2014

Vegetable oil ingredient key to destroying gastric disease bacteria: In mice, therapeutic nanoparticles dampen H. pylori bacteria and inflammation that lead to ulcers and gastric cancer November 25th, 2014

Research yields material made of single-atom layers that snap together like Legos November 25th, 2014

Discoveries

Lawrence Livermore researchers develop efficient method to produce nanoporous metals November 25th, 2014

Vegetable oil ingredient key to destroying gastric disease bacteria: In mice, therapeutic nanoparticles dampen H. pylori bacteria and inflammation that lead to ulcers and gastric cancer November 25th, 2014

Research yields material made of single-atom layers that snap together like Legos November 25th, 2014

Blu-ray disc can be used to improve solar cell performance: Data storage pattern transferred to solar cell increases light absorption November 25th, 2014

Announcements

Renishaw receives Queen's Award for spectroscopy developments November 25th, 2014

JPK reports on the use of AFM and the CellHesion module to study plant cells at the University of Queensland November 25th, 2014

Vegetable oil ingredient key to destroying gastric disease bacteria: In mice, therapeutic nanoparticles dampen H. pylori bacteria and inflammation that lead to ulcers and gastric cancer November 25th, 2014

Research yields material made of single-atom layers that snap together like Legos November 25th, 2014

Energy

Lawrence Livermore researchers develop efficient method to produce nanoporous metals November 25th, 2014

Research yields material made of single-atom layers that snap together like Legos November 25th, 2014

Blu-ray disc can be used to improve solar cell performance: Data storage pattern transferred to solar cell increases light absorption November 25th, 2014

UO-industry collaboration points to improved nanomaterials: University of Oregon microscope puts spotlight on the surface structure of quantum dots for designing new solar devices November 20th, 2014

Solar/Photovoltaic

Research yields material made of single-atom layers that snap together like Legos November 25th, 2014

Blu-ray disc can be used to improve solar cell performance: Data storage pattern transferred to solar cell increases light absorption November 25th, 2014

UO-industry collaboration points to improved nanomaterials: University of Oregon microscope puts spotlight on the surface structure of quantum dots for designing new solar devices November 20th, 2014

Eight19 secures 1m funding: Investment to develop production technology, and expand commercial activities for organic photovoltaics November 19th, 2014

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More












ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE