Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > Photocatalysis as an energy source: Zn-Ga-O nanocubes improve conversion rate

Chinese researchers have developed a new nanomaterial to improve the chemical conversion rate in photocatalytic energy systems.
Chinese researchers have developed a new nanomaterial to improve the chemical conversion rate in photocatalytic energy systems.

Abstract:
As global energy demand continues to grow, the need to find a carbon-neutral and sustainable energy source for future generations has become imperative. An especially attractive solution is to store solar energy in the form of chemical fuel via artificial photosynthesis to convert carbon dioxide into hydrocarbons.

Photocatalysis as an energy source: Zn-Ga-O nanocubes improve conversion rate

Germany | Posted on September 20th, 2012

To apply this photocatalysis technique in practical applications, it is useful to synthesize semiconductor photocatalysts with specific facets that induce high reactive activities and high reactive selectivity. Attempts to deliberately fabricate such materials are made more difficult by the thermodynamic growth mechanisms of the crystals. Up until now, the solution to this problem has been the selective absorption of surfactants or ions on high-energy facets to suppress the growth rate along their axes.

Now, Dr. S. C. Yan and co-workers, working at Nanjing University, China, have found a simple route to synthesize ZnGa2O4 nanocubes with the {100} facets exposed. Using this ZnGa2O4 nanocube as a photocatalyst, under UV light irradiation CO2 was successfully converted into a hydrocarbon, CH4.

Usually, for a semiconductor photocatalyst, a light-hole effective mass induces high hole mobility, which is beneficial for improving the photocatalytic reaction. However, Yan et al. used the hole effective mass to check the photocatalytic activities of a given single-crystal photocatalyst for the first time. Their work may open a novel route to find the more efficient photocatalyst for driving conversion from solar to chemical energy. A future effort is focusing on the discovery of visible-light-response photocatalyst with sufficiently light hole effective mass.

####

For more information, please click here

Copyright © Wiley-VCH Materials Science Journals

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Link to the original paper on Wiley Online Library:

Related News Press

News and information

Silicene Labs Announces the Launch of Patent-Pending, 2D Materials Composite Index™ : The Initial 2D Materials Composite Index™ for Q2 2014 Is: 857.3; Founders Include World-Renowned Physicist and Seasoned Business and IP Professionals July 24th, 2014

Iranian Scientists Produce Transparent Nanocomposite Coatings with Longer Lifetime July 24th, 2014

Deadline Announced for Registration in 7th Int'l Nanotechnology Festival in Iran July 23rd, 2014

A Crystal Wedding in the Nanocosmos July 23rd, 2014

Chemistry

Oregon chemists eye improved thin films with metal substitution: Solution-based inorganic process could drive more efficient electronics and solar devices July 21st, 2014

Fundamental Chemistry Findings Could Help Extend Moore’s Law: A Berkeley Lab-Intel collaboration outlines the chemistry of photoresist, enabling smaller features for future generations of microprocessors July 15th, 2014

Researchers discover boron 'buckyball' July 14th, 2014

Highlights for 2014 national meeting of world’s largest scientific society July 8th, 2014

Discoveries

Iranian Scientists Produce Transparent Nanocomposite Coatings with Longer Lifetime July 24th, 2014

UCF Nanotech Spinout Developing Revolutionary Battery Technology: Power the Next Generation of Electronics with Carbon July 23rd, 2014

A Crystal Wedding in the Nanocosmos July 23rd, 2014

Nano-sized Chip "Sniffs Out" Explosives Far Better than Trained Dogs: TAU researcher's groundbreaking sensor detects miniscule concentrations of hazardous materials in the air July 23rd, 2014

Announcements

Silicene Labs Announces the Launch of Patent-Pending, 2D Materials Composite Index™ : The Initial 2D Materials Composite Index™ for Q2 2014 Is: 857.3; Founders Include World-Renowned Physicist and Seasoned Business and IP Professionals July 24th, 2014

Iranian Scientists Produce Transparent Nanocomposite Coatings with Longer Lifetime July 24th, 2014

Deadline Announced for Registration in 7th Int'l Nanotechnology Festival in Iran July 23rd, 2014

A Crystal Wedding in the Nanocosmos July 23rd, 2014

Energy

Oregon chemists eye improved thin films with metal substitution: Solution-based inorganic process could drive more efficient electronics and solar devices July 21st, 2014

Steam from the sun: New spongelike structure converts solar energy into steam July 21st, 2014

3-D nanostructure could benefit nanoelectronics, gas storage: Rice U. researchers predict functional advantages of 3-D boron nitride July 15th, 2014

Nanotechnology that will impact the Security & Defense sectors to be discussed at NanoSD2014 conference July 8th, 2014

Solar/Photovoltaic

Steam from the sun: New spongelike structure converts solar energy into steam July 21st, 2014

Making dreams come true: Making graphene from plastic? July 2nd, 2014

Shrinky Dinks close the gap for nanowires July 1st, 2014

New Study Raises Possibility of Production of P-Type Solar Cells July 1st, 2014

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE