Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Plasmon Bands in Gold-Silver Nanorods

Researchers from The Chinese University of Hong Kong have shown that there are four plasmon bands in (Au core)−(Ag shell) nanorods.
Researchers from The Chinese University of Hong Kong have shown that there are four plasmon bands in (Au core)−(Ag shell) nanorods.

Abstract:
Localized surface plasmon resonances have recently received intense attention due to their intriguing and complex optical properties. Gold and silver nanostructures, which produce resonances located in the visible range and are stable under ambient conditions, have been studied extensively from fundamental sciences aspects as well as due to their numerous potential applications. Both materials have their advantages. Silver nanocrystals exhibit larger field enhancements, higher refractive index sensitivities, and larger solar energy conversion efficiencies than gold nanocrystals. However, gold nanostructures show tunable longitudinal plasmon wavelengths, are chemically stable and facile growth methods exist. (Gold core) − (silver shell) nanostructures with different shapes have been fabricated to combine these advantages and to allow for tailoring of the plasmon wavelengths by varying the thickness. However, the exact nature of the plasmonic properties of these structures has not been investigated systematically and still remains controversial.

Plasmon Bands in Gold-Silver Nanorods

Germany | Posted on September 20th, 2012

Now, Jianfang Wang and co-workers from The Chinese University of Hong Kong have for the first time unraveled the nature of the plasmon bands on gold-silver nanorods. They started with two differently sized gold nanorods and coated them with silver shells with systematically varied thicknesses. The evolution of the plasmon bands, their peak wavelengths and extinction intensities as functions of the shell thickness were studied. The nature of each plasmon band was determined unambiguously with finite-difference time-domain (FDTD) simulations. This first systematical study on the plasmon resonances of gold-silver nanorods will be useful for the construction of optical devices as well as for plasmon-enhanced spectroscopy techniques.

The research was reported in Advanced Optical Materials, a new section in Advanced Materials dedicated to breakthrough discoveries and fundamental research in photonics, plasmonics, metamaterials, and more, covering all aspects of light-matter interactions.

####

For more information, please click here

Copyright © Wiley-VCH Materials Science Journals

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Link to the original paper on Wiley Online Library:

To get Advanced Optical Materials email alerts click here:

Related News Press

News and information

Traffic jam in empty space: New success for Konstanz physicists in studying the quantum vacuum January 22nd, 2017

A big nano boost for solar cells: Kyoto University and Osaka Gas effort doubles current efficiencies January 21st, 2017

Explaining how 2-D materials break at the atomic level January 20th, 2017

New research helps to meet the challenges of nanotechnology: Research helps to make the most of nanoscale catalytic effects for nanotechnology January 20th, 2017

Imaging

Chemists Cook up New Nanomaterial and Imaging Method: Nanomaterials can store all kinds of things, including energy, drugs and other cargo January 19th, 2017

Distinguishing truth under the surface: electrostatic or mechanic December 31st, 2016

Nanoscale 'conversations' create complex, multi-layered structures: New technique leverages controlled interactions across surfaces to create self-assembled materials with unprecedented complexity December 22nd, 2016

Safe and inexpensive hydrogen production as a future energy source: Osaka University researchers develop efficient 'green' hydrogen production system that operates at room temperature in air December 21st, 2016

Discoveries

Traffic jam in empty space: New success for Konstanz physicists in studying the quantum vacuum January 22nd, 2017

A big nano boost for solar cells: Kyoto University and Osaka Gas effort doubles current efficiencies January 21st, 2017

Explaining how 2-D materials break at the atomic level January 20th, 2017

New research helps to meet the challenges of nanotechnology: Research helps to make the most of nanoscale catalytic effects for nanotechnology January 20th, 2017

Announcements

Traffic jam in empty space: New success for Konstanz physicists in studying the quantum vacuum January 22nd, 2017

A big nano boost for solar cells: Kyoto University and Osaka Gas effort doubles current efficiencies January 21st, 2017

A toolkit for transformable materials: How to design materials with reprogrammable shape and function January 20th, 2017

New research helps to meet the challenges of nanotechnology: Research helps to make the most of nanoscale catalytic effects for nanotechnology January 20th, 2017

Tools

Chemists Cook up New Nanomaterial and Imaging Method: Nanomaterials can store all kinds of things, including energy, drugs and other cargo January 19th, 2017

Nanometrics to Announce Fourth Quarter and Full Year Financial Results on February 7, 2017 January 19th, 2017

Distinguishing truth under the surface: electrostatic or mechanic December 31st, 2016

Nanomechanics Inc. Continues Growth in Revenue and Market Penetration: Leading nanoindentation company reports continued growth in revenues and distribution channels on national and international scales December 27th, 2016

Photonics/Optics/Lasers

Traffic jam in empty space: New success for Konstanz physicists in studying the quantum vacuum January 22nd, 2017

Recreating conditions inside stars with compact lasers: Scientists offer a new path to creating the extreme conditions found in stars, using ultra-short laser pulses irradiating nanowires January 12th, 2017

New laser based on unusual physics phenomenon could improve telecommunications, computing January 12th, 2017

Researcher's discovery of new crystal structure holds promise for optoelectronic devices January 6th, 2017

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project