Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Plasmon Bands in Gold-Silver Nanorods

Researchers from The Chinese University of Hong Kong have shown that there are four plasmon bands in (Au core)−(Ag shell) nanorods.
Researchers from The Chinese University of Hong Kong have shown that there are four plasmon bands in (Au core)−(Ag shell) nanorods.

Abstract:
Localized surface plasmon resonances have recently received intense attention due to their intriguing and complex optical properties. Gold and silver nanostructures, which produce resonances located in the visible range and are stable under ambient conditions, have been studied extensively from fundamental sciences aspects as well as due to their numerous potential applications. Both materials have their advantages. Silver nanocrystals exhibit larger field enhancements, higher refractive index sensitivities, and larger solar energy conversion efficiencies than gold nanocrystals. However, gold nanostructures show tunable longitudinal plasmon wavelengths, are chemically stable and facile growth methods exist. (Gold core) − (silver shell) nanostructures with different shapes have been fabricated to combine these advantages and to allow for tailoring of the plasmon wavelengths by varying the thickness. However, the exact nature of the plasmonic properties of these structures has not been investigated systematically and still remains controversial.

Plasmon Bands in Gold-Silver Nanorods

Germany | Posted on September 20th, 2012

Now, Jianfang Wang and co-workers from The Chinese University of Hong Kong have for the first time unraveled the nature of the plasmon bands on gold-silver nanorods. They started with two differently sized gold nanorods and coated them with silver shells with systematically varied thicknesses. The evolution of the plasmon bands, their peak wavelengths and extinction intensities as functions of the shell thickness were studied. The nature of each plasmon band was determined unambiguously with finite-difference time-domain (FDTD) simulations. This first systematical study on the plasmon resonances of gold-silver nanorods will be useful for the construction of optical devices as well as for plasmon-enhanced spectroscopy techniques.

The research was reported in Advanced Optical Materials, a new section in Advanced Materials dedicated to breakthrough discoveries and fundamental research in photonics, plasmonics, metamaterials, and more, covering all aspects of light-matter interactions.

####

For more information, please click here

Copyright © Wiley-VCH Materials Science Journals

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Link to the original paper on Wiley Online Library:

To get Advanced Optical Materials email alerts click here:

Related News Press

News and information

Rice U. chemists create 3-D printed graphene foam June 22nd, 2017

Tiny bubbles provide tremendous propulsion in new microparticles research-Ben-Gurion U. June 21st, 2017

Enhanced photocatalytic activity by Cu2O nanoparticles integrated H2Ti3O7 nanotubes June 21st, 2017

Researchers developed nanoparticle based contrast agent for dual modal imaging of cancer June 21st, 2017

Leti’s Autonomous-Vehicle System Embedded in Infineon’s AURIX Platform: Leti’s Low-Power, Multi-Sensor System that Transforms Distance Data into Clear Information About the Driving Environment Will Be Demonstrated at ITS Meeting in Strasbourg, June 19-22 June 20th, 2017

Imaging

Researchers developed nanoparticle based contrast agent for dual modal imaging of cancer June 21st, 2017

Cambridge Nanotherm partners with Inabata for global sales and distribution June 20th, 2017

GLOBALFOUNDRIES Launches 7nm ASIC Platform for Data Center, Machine Learning, and 5G Networks FX-7TM offering leverages the company’s 7nm: FinFET process to deliver best in class IP and Solutions June 13th, 2017

Discoveries

Rice U. chemists create 3-D printed graphene foam June 22nd, 2017

Tiny bubbles provide tremendous propulsion in new microparticles research-Ben-Gurion U. June 21st, 2017

Enhanced photocatalytic activity by Cu2O nanoparticles integrated H2Ti3O7 nanotubes June 21st, 2017

Researchers developed nanoparticle based contrast agent for dual modal imaging of cancer June 21st, 2017

Announcements

Rice U. chemists create 3-D printed graphene foam June 22nd, 2017

Tiny bubbles provide tremendous propulsion in new microparticles research-Ben-Gurion U. June 21st, 2017

Enhanced photocatalytic activity by Cu2O nanoparticles integrated H2Ti3O7 nanotubes June 21st, 2017

Researchers developed nanoparticle based contrast agent for dual modal imaging of cancer June 21st, 2017

Tools

Researchers developed nanoparticle based contrast agent for dual modal imaging of cancer June 21st, 2017

Oxford Instruments congratulates Lancaster University for inaugurating the IsoLab, built for studying quantum systems June 20th, 2017

Changing the color of laser light on the femtosecond time scale: How BiCoO3 achieves second harmonic generation June 14th, 2017

Leti Announces Two New Tools for Improving Transportation Comfort, Safety and Efficiency: Wearable Device Measures Stress Responses for Travelers, Pilots and Truck Drivers, While Smartphone App Provides Transit Agencies Broad Data on Transport Modes June 13th, 2017

Photonics/Optics/Lasers

Rice U. chemists create 3-D printed graphene foam June 22nd, 2017

New carbon nitride material coupled with ruthenium enhances visible-light CO2 reduction in water June 15th, 2017

Changing the color of laser light on the femtosecond time scale: How BiCoO3 achieves second harmonic generation June 14th, 2017

Learning with light: New system allows optical “deep learning”: Neural networks could be implemented more quickly using new photonic technology June 12th, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project