Nanotechnology Now

Our NanoNews Digest Sponsors


Heifer International

Wikipedia Affiliate Button

Home > Press > Large-Area Low-Cost Gold Nanostructures through Colloidal Nanolithography

Abstract:
Plasmonics nanostructures can generate exceptionally large optical field enhancements in cubic-nanometer volumes which can be utilized to construct highly sensitive sensors based on localized surface plasmon resonances. When designed with the appropriate geometry, metallic nanostructures exhibit narrow resonances, so called Fano resonances. These resonances can provide enhanced sensitivity which easily reach or even exceed the best known plasmonic responses of single plasmonic particles.

Large-Area Low-Cost Gold Nanostructures through Colloidal Nanolithography

Germany | Posted on September 20th, 2012

One suitable geometry to generate such resonances is the asymmetric double split-ring resonator, where two curved nanostructures with different lengths are facing each other. Several examples of asymmetric split-ring resonator structures have been demonstrated with various applications including biosensors, lasing spasers, coherent plasmon emitters, and tunable metamaterials. However, the wide use of Fano sensors has been hampered by two issues: the availability of low-cost light sources, and the ability to mass-produce Fano sensors over large areas at low cost.

Jun Zhao, Harald Giessen, and coworkers (University of Stuttgart) have now developed a method to fabricate asymmetric split-ring resonators over a large area at low cost using colloidal nanolithography in combination with angled evaporation. The fabricated samples exhibit sharp and narrow optical Fano resonances in the near infrared, which are well suited for localized surface plasmon resonance refractive index sensing with atto- or zeptoliter volumes. A strong improvement of the shape and the modulation depth of the Fano resonances could be achieved through reshaping of the metal by annealing the sample at 150C. The presented method is very flexible towards other structure geometries, scalable to even larger areas, very reproducible, and adaptable for other substrate materials and metals. This technique will pave the way towards wide utilization of plasmonic sensing applications.

The research was reported in Advanced Optical Materials, a new section in Advanced Materials dedicated to breakthrough discoveries and fundamental research in photonics, plasmonics, metamaterials, and more, covering all aspects of light-matter interactions.

####

For more information, please click here

Copyright © Wiley-VCH Materials Science Journals

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Link to the original paper on Wiley Online Library:

To get Advanced Optical Materials email alerts click here:

Related News Press

News and information

Lehigh engineer discovers a high-speed nano-avalanche: New findings published in the Journal of Electrochemical Society about the process involving transformations in glass that occur under intense electrical and thermal conditions could lead the way to more energy-efficient glas August 24th, 2016

Light and matter merge in quantum coupling: Rice University physicists probe photon-electron interactions in vacuum cavity experiments August 24th, 2016

New microchip demonstrates efficiency and scalable design: Increased power and slashed energy consumption for data centers August 24th, 2016

Tunneling nanotubes between neurons enable the spread of Parkinson's disease via lysosomes August 24th, 2016

Sensors

Down to the wire: ONR researchers and new bacteria August 18th, 2016

'Sniffer plasmons' could detect explosives: Scientists have proposed a graphene-based spaser that can detect even small amounts of various substances, including explosives August 16th, 2016

Perpetual 'ice water': Stable solid-liquid state revealed in nanoparticles: Gallium nanoparticles that are both solid and liquid are stable over a range of 1000 degrees Fahrenheit August 5th, 2016

New metamaterials can change properties with a flick of a light-switch: Material can lead to new optical devices August 3rd, 2016

Discoveries

Lehigh engineer discovers a high-speed nano-avalanche: New findings published in the Journal of Electrochemical Society about the process involving transformations in glass that occur under intense electrical and thermal conditions could lead the way to more energy-efficient glas August 24th, 2016

Light and matter merge in quantum coupling: Rice University physicists probe photon-electron interactions in vacuum cavity experiments August 24th, 2016

New microchip demonstrates efficiency and scalable design: Increased power and slashed energy consumption for data centers August 24th, 2016

Tunneling nanotubes between neurons enable the spread of Parkinson's disease via lysosomes August 24th, 2016

Announcements

Lehigh engineer discovers a high-speed nano-avalanche: New findings published in the Journal of Electrochemical Society about the process involving transformations in glass that occur under intense electrical and thermal conditions could lead the way to more energy-efficient glas August 24th, 2016

Light and matter merge in quantum coupling: Rice University physicists probe photon-electron interactions in vacuum cavity experiments August 24th, 2016

New microchip demonstrates efficiency and scalable design: Increased power and slashed energy consumption for data centers August 24th, 2016

Tunneling nanotubes between neurons enable the spread of Parkinson's disease via lysosomes August 24th, 2016

Printing/Lithography/Inkjet/Inks

Tailored probes for atomic force microscopes: 3-D laser lithography enhances microscope for studying nanostructures in biology and engineering/ publication in Applied Physics Letters August 11th, 2016

Smarter self-assembly opens new pathways for nanotechnology: Brookhaven Lab scientists discover a way to create billionth-of-a-meter structures that snap together in complex patterns with unprecedented efficiency August 9th, 2016

Nanoscientists develop the 'ultimate discovery tool': Rapid discovery power is similar to what gene chips offer biology June 25th, 2016

Perovskite solar cells surpass 20 percent efficiency: EPFL researchers are pushing the limits of perovskite solar cell performance by exploring the best way to grow these crystals June 13th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic