Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Large-Area Low-Cost Gold Nanostructures through Colloidal Nanolithography

Abstract:
Plasmonics nanostructures can generate exceptionally large optical field enhancements in cubic-nanometer volumes which can be utilized to construct highly sensitive sensors based on localized surface plasmon resonances. When designed with the appropriate geometry, metallic nanostructures exhibit narrow resonances, so called Fano resonances. These resonances can provide enhanced sensitivity which easily reach or even exceed the best known plasmonic responses of single plasmonic particles.

Large-Area Low-Cost Gold Nanostructures through Colloidal Nanolithography

Germany | Posted on September 20th, 2012

One suitable geometry to generate such resonances is the asymmetric double split-ring resonator, where two curved nanostructures with different lengths are facing each other. Several examples of asymmetric split-ring resonator structures have been demonstrated with various applications including biosensors, lasing spasers, coherent plasmon emitters, and tunable metamaterials. However, the wide use of Fano sensors has been hampered by two issues: the availability of low-cost light sources, and the ability to mass-produce Fano sensors over large areas at low cost.

Jun Zhao, Harald Giessen, and coworkers (University of Stuttgart) have now developed a method to fabricate asymmetric split-ring resonators over a large area at low cost using colloidal nanolithography in combination with angled evaporation. The fabricated samples exhibit sharp and narrow optical Fano resonances in the near infrared, which are well suited for localized surface plasmon resonance refractive index sensing with atto- or zeptoliter volumes. A strong improvement of the shape and the modulation depth of the Fano resonances could be achieved through reshaping of the metal by annealing the sample at 150°C. The presented method is very flexible towards other structure geometries, scalable to even larger areas, very reproducible, and adaptable for other substrate materials and metals. This technique will pave the way towards wide utilization of plasmonic sensing applications.

The research was reported in Advanced Optical Materials, a new section in Advanced Materials dedicated to breakthrough discoveries and fundamental research in photonics, plasmonics, metamaterials, and more, covering all aspects of light-matter interactions.

####

For more information, please click here

Copyright © Wiley-VCH Materials Science Journals

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Link to the original paper on Wiley Online Library:

To get Advanced Optical Materials email alerts click here:

Related News Press

News and information

Researchers develop artificial building blocks of life March 8th, 2024

How surface roughness influences the adhesion of soft materials: Research team discovers universal mechanism that leads to adhesion hysteresis in soft materials March 8th, 2024

Two-dimensional bimetallic selenium-containing metal-organic frameworks and their calcinated derivatives as electrocatalysts for overall water splitting March 8th, 2024

Curcumin nanoemulsion is tested for treatment of intestinal inflammation: A formulation developed by Brazilian researchers proved effective in tests involving mice March 8th, 2024

Sensors

$900,000 awarded to optimize graphene energy harvesting devices: The WoodNext Foundation's commitment to U of A physicist Paul Thibado will be used to develop sensor systems compatible with six different power sources January 12th, 2024

A color-based sensor to emulate skin's sensitivity: In a step toward more autonomous soft robots and wearable technologies, EPFL researchers have created a device that uses color to simultaneously sense multiple mechanical and temperature stimuli December 8th, 2023

New tools will help study quantum chemistry aboard the International Space Station: Rochester Professor Nicholas Bigelow helped develop experiments conducted at NASA’s Cold Atom Lab to probe the fundamental nature of the world around us November 17th, 2023

TU Delft researchers discover new ultra strong material for microchip sensors: A material that doesn't just rival the strength of diamonds and graphene, but boasts a yield strength 10 times greater than Kevlar, renowned for its use in bulletproof vests November 3rd, 2023

Discoveries

What heat can tell us about battery chemistry: using the Peltier effect to study lithium-ion cells March 8th, 2024

Researchers’ approach may protect quantum computers from attacks March 8th, 2024

High-tech 'paint' could spare patients repeated surgeries March 8th, 2024

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

Announcements

What heat can tell us about battery chemistry: using the Peltier effect to study lithium-ion cells March 8th, 2024

Curcumin nanoemulsion is tested for treatment of intestinal inflammation: A formulation developed by Brazilian researchers proved effective in tests involving mice March 8th, 2024

The Access to Advanced Health Institute receives up to $12.7 million to develop novel nanoalum adjuvant formulation for better protection against tuberculosis and pandemic influenza March 8th, 2024

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

Printing/Lithography/Inkjet/Inks/Bio-printing/Dyes

Presenting: Ultrasound-based printing of 3D materials—potentially inside the body December 8th, 2023

Simple ballpoint pen can write custom LEDs August 11th, 2023

Disposable electronics on a simple sheet of paper October 7th, 2022

Newly developed technique to improve quantum dots color conversion performance: Researchers created perovskite quantum dot microarrays to achieve better results in full-color light-emitting devices and expand potential applications June 10th, 2022

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project