Nanotechnology Now

Our NanoNews Digest Sponsors


Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Large-Area Low-Cost Gold Nanostructures through Colloidal Nanolithography

Abstract:
Plasmonics nanostructures can generate exceptionally large optical field enhancements in cubic-nanometer volumes which can be utilized to construct highly sensitive sensors based on localized surface plasmon resonances. When designed with the appropriate geometry, metallic nanostructures exhibit narrow resonances, so called Fano resonances. These resonances can provide enhanced sensitivity which easily reach or even exceed the best known plasmonic responses of single plasmonic particles.

Large-Area Low-Cost Gold Nanostructures through Colloidal Nanolithography

Germany | Posted on September 20th, 2012

One suitable geometry to generate such resonances is the asymmetric double split-ring resonator, where two curved nanostructures with different lengths are facing each other. Several examples of asymmetric split-ring resonator structures have been demonstrated with various applications including biosensors, lasing spasers, coherent plasmon emitters, and tunable metamaterials. However, the wide use of Fano sensors has been hampered by two issues: the availability of low-cost light sources, and the ability to mass-produce Fano sensors over large areas at low cost.

Jun Zhao, Harald Giessen, and coworkers (University of Stuttgart) have now developed a method to fabricate asymmetric split-ring resonators over a large area at low cost using colloidal nanolithography in combination with angled evaporation. The fabricated samples exhibit sharp and narrow optical Fano resonances in the near infrared, which are well suited for localized surface plasmon resonance refractive index sensing with atto- or zeptoliter volumes. A strong improvement of the shape and the modulation depth of the Fano resonances could be achieved through reshaping of the metal by annealing the sample at 150C. The presented method is very flexible towards other structure geometries, scalable to even larger areas, very reproducible, and adaptable for other substrate materials and metals. This technique will pave the way towards wide utilization of plasmonic sensing applications.

The research was reported in Advanced Optical Materials, a new section in Advanced Materials dedicated to breakthrough discoveries and fundamental research in photonics, plasmonics, metamaterials, and more, covering all aspects of light-matter interactions.

####

For more information, please click here

Copyright © Wiley-VCH Materials Science Journals

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Link to the original paper on Wiley Online Library:

To get Advanced Optical Materials email alerts click here:

Related News Press

News and information

Searching for a nanotech self-organizing principle May 1st, 2016

Clay nanotube-biopolymer composite scaffolds for tissue engineering May 1st, 2016

Cooling graphene-based film close to pilot-scale production April 30th, 2016

Personal cooling units on the horizon April 29th, 2016

Sensors

Electrically Conductive Graphene Ink Enables Printing of Biosensors April 23rd, 2016

Highlights from the Graphene Flagship April 22nd, 2016

Team builds first quantum cascade laser on silicon: Eliminates the need for an external light source for mid-infrared silicon photonic devices or photonic circuits April 21st, 2016

With simple process, UW-Madison engineers fabricate fastest flexible silicon transistor April 21st, 2016

Discoveries

Clay nanotube-biopolymer composite scaffolds for tissue engineering May 1st, 2016

Cooling graphene-based film close to pilot-scale production April 30th, 2016

Personal cooling units on the horizon April 29th, 2016

Exploring phosphorene, a promising new material April 29th, 2016

Announcements

Clay nanotube-biopolymer composite scaffolds for tissue engineering May 1st, 2016

Cooling graphene-based film close to pilot-scale production April 30th, 2016

Personal cooling units on the horizon April 29th, 2016

Exploring phosphorene, a promising new material April 29th, 2016

Printing/Lithography/Inkjet/Inks

Electrically Conductive Graphene Ink Enables Printing of Biosensors April 23rd, 2016

Highlights from the Graphene Flagship April 22nd, 2016

Penn engineers develop first transistors made entirely of nanocrystal 'inks April 11th, 2016

Researchers use 3-D printing to create structure with active chemistry April 4th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic