Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Nanomaterials in a Heart Beat

Abstract:
Stem cell scientists have capitalised on the electrical properties of a widely used nanomaterial to develop cells which may allow the regeneration of cardiac cells. The breakthrough has been led by a team of scientists at the Regenerative Medicine Institute (REMEDI) at the National University of Ireland Galway in conjunction with Trinity College Dublin.

Nanomaterials in a Heart Beat

Galway, Ireland | Posted on September 19th, 2012

Heart disease is the leading cause of death in Ireland. Once damaged by heart attack, cardiac muscle has very little capacity for self-repair and at present there are no clinical treatments available to repair damaged cardiac muscle tissue.

Over the last 10 years, there has been tremendous interest in developing a cell-based therapy to address this problem. Since the use of a patient's own heart cells is not a viable clinical option, many researchers are working to try to find an alternative source of cells that could be used for cardiac tissue repair.

REMEDI researchers Dr Valerie Barron and Dr Mary Murphy have brought together a multi-disciplinary team of Irish materials scientists, physicists and biologists from REMEDI at National University of Ireland Galway and Trinity College Dublin to address this problem.

The researchers recognised that carbon nanotubes, a widely used nanoparticle, is reactive to electrical stimulation. They then used these nanomaterials to create cells with the characteristics of cardiac progenitors, a special type of cell found in the heart, from adult stem cells.

"The electrical properties of the nanomaterial triggered a response in the mesenchymal (adult) stem cells, which we sourced from human bone marrow. In effect, they became electrified, which made them morph into more cardiac-like cells", explains Valerie Barron of REMEDI at National University of Ireland Galway. "This is a totally new approach and provides a ready-source of tailored cells, which have the potential to be used as a new clinical therapy. Excitingly, this symbiotic strategy lays the foundation stone for other electroactive tissue repair applications, and can be readily exploited for other clinically challenging areas such as in the brain and the spinal cord."

This work has recently been published in two leading scientific journals, Biomaterials and Macromolecular Bioscience, and was carried out in collaboration with Professor Werner Blau, Investigator in CRANN and the School of Physics, Trinity College Dublin (TCD).

"It is great to see two decades of our pioneering nanocarbon research here at TCD come to fruition in a way that addresses a major global health problem. Hopefully many people around the world will ultimately benefit from it. Some of our carbon nanotube research has been patented by TCD and is being licensed to international companies in material science, electronics and health care," said Professor Blau.

Nanoweek 2012 is currently underway, running 14-21 September. It offers an opportune time to reflect on the type of healthcare solutions that nanomaterials can offer. Ireland is a world leader in nanoscience research, ranked 6th globally.

####

About National University of Ireland, Galway
NUI Galway is one of Ireland's leading universities, with a great reputation for teaching and research excellence.

For more information, please click here

Contacts:
Ruth Hynes

Copyright © AlphaGalileo

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

The electrical stimulation of carbon nanotubes to provide a cardiomimetic cue to MSCs. Mooney E, Mackle JN, Blond DJ, O'Cearbhaill E, Shaw G, Blau WJ, Barry FP, Barron V, Murphy JM. Biomaterials. 2012 Sep;33(26):6132-9. Epub 2012 Jun 6:

In vitro characterization of an electroactive carbon-nanotube-based nanofiber scaffold for tissue engineering. Mackle JN, Blond DJ, Mooney E, McDonnell C, Blau WJ, Shaw G, Barry FP, Murphy JM, Barron V. Macromol Biosci. 2011 Sep 9;11(9):1272-82. doi: 10.1002/mabi.201100029. Epub 2011 Jul 4:

Related News Press

News and information

Strength of hair inspires new materials for body armor January 18th, 2017

Self-assembling particles brighten future of LED lighting January 18th, 2017

Dressing a metal in various colors: DGIST research developed a technology to coat metal with several nanometers of semiconducting materials January 17th, 2017

Nanoparticle exposure can awaken dormant viruses in the lungs January 17th, 2017

Nanomedicine

New active filaments mimic biology to transport nano-cargo: A new design for a fully biocompatible motility engine transports colloidal particles faster than diffusion with active filaments January 11th, 2017

Keystone Nano Announces FDA Approval Of Investigational New Drug Application For Ceramide NanoLiposome For The Improved Treatment Of Cancer January 10th, 2017

Captured on video: DNA nanotubes build a bridge between 2 molecular posts: Research may lead to new lines of direct communication with cells January 9th, 2017

Arrowhead Provides Response to New Minority Shareholder Announcement January 7th, 2017

Discoveries

Strength of hair inspires new materials for body armor January 18th, 2017

Self-assembling particles brighten future of LED lighting January 18th, 2017

Dressing a metal in various colors: DGIST research developed a technology to coat metal with several nanometers of semiconducting materials January 17th, 2017

Nanoparticle exposure can awaken dormant viruses in the lungs January 17th, 2017

Announcements

Strength of hair inspires new materials for body armor January 18th, 2017

Self-assembling particles brighten future of LED lighting January 18th, 2017

Dressing a metal in various colors: DGIST research developed a technology to coat metal with several nanometers of semiconducting materials January 17th, 2017

Nanoparticle exposure can awaken dormant viruses in the lungs January 17th, 2017

Events/Classes

Harris & Harris Group Issues Reminder for Shareholder Update Call on January 10, 2017 January 10th, 2017

Nanometrics to Present at the 19th Annual Needham Growth Conference December 22nd, 2016

Leti Will Demonstrate Fusion of Autonomous Car’s Senses: SIGMA FUSION’s Efficient, Sensor-based System Fits in a Microcontroller Platform, Anticipates Safety Requirements December 13th, 2016

Imec and Holst Centre Introduce World’s First Solid-State Multi-Ion Sensor for Internet-of-Things Applications December 13th, 2016

Research partnerships

Chemistry on the edge: Experiments at Berkeley Lab confirm that structural defects at the periphery are key in catalyst function January 13th, 2017

Recreating conditions inside stars with compact lasers: Scientists offer a new path to creating the extreme conditions found in stars, using ultra-short laser pulses irradiating nanowires January 12th, 2017

Zeroing in on the true nature of fluids within nanocapillaries: While exploring the behavior of fluids at the nanoscale, a group of researchers at the French National Center for Scientific Research discovered a peculiar state of fluid mixtures contained in microscopic channels January 11th, 2017

New active filaments mimic biology to transport nano-cargo: A new design for a fully biocompatible motility engine transports colloidal particles faster than diffusion with active filaments January 11th, 2017

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project