Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Revolutionary ultrathin, flat lens: Smart phones as thin as a credit card?

Revolutionary ultrathin, flat lens: Smart phones as thin as a credit card?
Credit: iStockphoto/Thinkstock
Revolutionary ultrathin, flat lens: Smart phones as thin as a credit card?

Credit: iStockphoto/Thinkstock

Abstract:
Scientists are reporting development of a revolutionary new lens — flat, distortion-free, so small that more than 1,500 would fit across the width of a human hair — capable in the future of replacing lenses in applications ranging from cell phones to cameras to fiber-optic communication systems. The advance, which could lead to smart phones as thin as a credit card, appears in ACS' journal Nano Letters.

Revolutionary ultrathin, flat lens: Smart phones as thin as a credit card?

Washington, DC | Posted on September 19th, 2012

Federico Capasso and colleagues explain that the lenses used to focus light in eyeglasses, microscopes and other products use the same basic technology dating to the late 1200s, when spectacle lenses were introduced in Europe. Existing lenses are not thin or flat enough to remove distortions, such as spherical aberration, astigmatism and coma, which prevent the creation of a sharp image. Correction of those distortions requires complex solutions, such as multiple lenses that increase weight and take up space. To overcome these challenges, the scientists sought to develop a new superthin, flat lens.

Although the new lens is ultra-thin, it has a resolving power that actually approaches the theoretical limits set by the laws of optics. The lens surface is patterned with tiny metallic stripes which bend light differently as one moves away from the center, causing the beam to sharply focus without distorting the images. The current version of the lens works at a specific design wavelength, but the scientists say it can be redesigned for use with broad-band light.

The authors acknowledge funding from the National Science Foundation, the Robert A. Welch Foundation and the European Communities Seventh Framework Programme, as well as support from the Center for Nanoscale Systems at Harvard University.

####

For more information, please click here

Contacts:
Federico Capasso, Ph.D.
School of Engineering and Applied Sciences, Harvard University
Cambridge, Mass. 02138

Copyright © American Chemical Society (ACS)

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

DOWNLOAD FULL TEXT ARTICLE - “Aberration-Free Ultrathin Flat Lenses and Axicons at Telecom Wavelengths Based on Plasmonic Metasurfaces”

Related News Press

News and information

Diamonds and quantum information processing on the nano scale August 31st, 2016

Device to control 'color' of electrons in graphene provides path to future electronics August 31st, 2016

Graphene key to growing 2-dimensional semiconductor with extraordinary properties August 30th, 2016

University of Akron researchers find thin layers of water can become ice-like at room temperature: Results could lead to an assortment of anti-friction solutions August 30th, 2016

Display technology/LEDs/SS Lighting/OLEDs

Continuous roll-process technology for transferring and packaging flexible LSI August 29th, 2016

McMaster researchers resolve a problem that has been holding back a technological revolution August 18th, 2016

Leading Advanced Materials Manufacturer Pixelligent Closes $10.4 Million in Funding: Capital Will Boost Capacity for North American Manufacturing, Drive Asian Expansion, and Continue Innovation in Solid State Lighting and OLED Display Applications August 16th, 2016

Towards a better screen; New molecules promise cheaper, more efficient OLED displays August 9th, 2016

Govt.-Legislation/Regulation/Funding/Policy

Device to control 'color' of electrons in graphene provides path to future electronics August 31st, 2016

Graphene key to growing 2-dimensional semiconductor with extraordinary properties August 30th, 2016

New approach to determining how atoms are arranged in materials August 25th, 2016

Johns Hopkins scientists track metabolic pathways to find drug combination for pancreatic cancer August 25th, 2016

Discoveries

Diamonds and quantum information processing on the nano scale August 31st, 2016

Device to control 'color' of electrons in graphene provides path to future electronics August 31st, 2016

Graphene key to growing 2-dimensional semiconductor with extraordinary properties August 30th, 2016

University of Akron researchers find thin layers of water can become ice-like at room temperature: Results could lead to an assortment of anti-friction solutions August 30th, 2016

Announcements

Diamonds and quantum information processing on the nano scale August 31st, 2016

Device to control 'color' of electrons in graphene provides path to future electronics August 31st, 2016

Graphene key to growing 2-dimensional semiconductor with extraordinary properties August 30th, 2016

University of Akron researchers find thin layers of water can become ice-like at room temperature: Results could lead to an assortment of anti-friction solutions August 30th, 2016

Grants/Awards/Scholarships/Gifts/Contests/Honors/Records

Graphene key to growing 2-dimensional semiconductor with extraordinary properties August 30th, 2016

A nanoscale wireless communication system via plasmonic antennas: Greater control affords 'in-plane' transmission of waves at or near visible light August 27th, 2016

Forces of nature: Interview with microscopy innovators Gerd Binnig and Christoph Gerber August 26th, 2016

New electrical energy storage material shows its power: Nanomaterial combines attributes of both batteries and supercapacitors August 25th, 2016

Photonics/Optics/Lasers

Diamonds and quantum information processing on the nano scale August 31st, 2016

Graphene key to growing 2-dimensional semiconductor with extraordinary properties August 30th, 2016

Silicon nanoparticles trained to juggle light: Research findings prove the capabilities of silicon nanoparticles for flexible data processing in optical communication systems August 25th, 2016

AIM Photonics Announces Release of Process Design Kit (PDK) for Integrated Silicon Photonics Design August 25th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic