Nanotechnology Now





Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > BIOX: Amorphous iron oxide nanostructures of bacterial origin for applications including anodes for Li ion batteries

Fig. 1. 
(A) Ocherous deposits ubiquitously seen in water pools.
(B) BIOX deposits collected from a water pool.
(C) BIOX sheaths in the deposit.
(D) A longitudinal section of a BIOX sheath enveloping bacterial cells.
(E) Chain-like BIOX
(F) A twisting BIOX bundle comprised of fibrous materials.
(G) Fibrous bundles connecting to a bacterial cell.
Fig. 1. (A) Ocherous deposits ubiquitously seen in water pools. (B) BIOX deposits collected from a water pool. (C) BIOX sheaths in the deposit. (D) A longitudinal section of a BIOX sheath enveloping bacterial cells. (E) Chain-like BIOX (F) A twisting BIOX bundle comprised of fibrous materials. (G) Fibrous bundles connecting to a bacterial cell.

Abstract:
Professor Jun Takada, Graduate School of Natural Science and Technology

"Iron-oxidizing bacteria" produce extracellular, uniquely-shaped microsheaths or fibrous bundle nanostructures comprising mainly of iron oxides—known as Biogenous iron oxides (BIOX)—ubiquitously in natural hydrosphere at ambient temperature (Fig. 1).

BIOX: Amorphous iron oxide nanostructures of bacterial origin for applications including anodes for Li ion batteries

Okayama, Japan | Posted on September 19th, 2012

Although BIOX has been generally recognized as waste, we have studied its properties for as yet unknown potential industrial applications. Our careful and focused studies revealed BIOX matrix to have the following physical properties: (i) an amorphous state; (ii) consist of organic/inorganic hybrid of nanoparticles of approximately 3 nm diameter; (iii) the nanoparticles are composed of many elements, C, O, Fe, Si and P; (iv) inorganic elements are linked via oxygen.

Importantly, BIOX has a far superior potential (for example a large capacity) as an anode material of Li-ion batteries compared to conventional carbon anodes. In addition, BIOX exhibits an amazing, wide range of functions compared with other materials currently: (i) higher catalytic potential; (ii) higher affinity to human cells; and (iii) brighter color property. All these characters are superior to those of artificially synthesized iron oxides. We are confident that the eco-friendly, nontoxic, and low-cost BIOX will be a next-generation functional material.

Detailed studies of an isolated strain of one type of the bacteria led us to elucidate the incipient mechanism of BIOX formation. Our experiments showed that extracellular secretion of bacterial polymers triggers deposition and binding of aquatic inorganics such as Fe, Si, and P, which results in the unique organic/inorganic hybrid. Further analysis is in progress for a greater insight into how the mechanism and mode of chemical linkages in the BIOX matrix contribute to the aforementioned functions.

Technical publications

H. Hashimoto et al, "Characteristics of hollow microtubes consisting of amorphous iron oxide nanoparticles produced by iron oxidizing bacteria Leptothrix ochracea," Journal of Magnetism and Magnetic Materials, 310, 2405, (2007).

T. Sakai et al, "Chemical modification of biogenous iron oxide to create an excellent enzyme scaffold," Organic Biomolecular Chemistry, 8, 336 (2010).

T. Ema et al, "Highly active lipase immobilized on biogenous iron oxide via an organic bridging group: the dramatic effect of the immobilization support on enzymatic function," Green Chemistry, 13, 3187 (2011).

T. Suzuki et al, "Environmental microbiology: silicon and phosphorus linkage with iron via oxygen in the amorphous matrix of Gallionella ferruginea stalks", Applied and Environmental Microbiology, 78, 236 (2012).

M. Furutani et al, "Initial assemblage of bacterial saccharic fibrils and element deposition to form an immature sheath in cultured Leptothrix sp. strain OUMS1", Minerals, 1, 157, (2011).

K. Mandai et al, "Iron oxide-immobilized palladium catalyst for the solvent-free Suzuki-Miyaura coupling reaction", Tetrahedron Letters, 53, 329, (2012).

H. Hashimoto et al, "Preparation, microstructure, and colour tone of microtubule material composed of hematite/amorphous-silicate nanocomposite from iron oxide of bacterial origin", Dyes and Pigments. Available online 6 July 2012. (doi. 10.1016/j.dyepig.2012.06.024).

####

About Okayama University
Okayama University is one of the largest comprehensive universities in Japan with roots going back to the Medical Training Place sponsored by the Lord of Okayama and established in 1870. Now with 1,300 faculty and 14,000 students, the University offers courses in specialties ranging from medicine and pharmacy to humanities and physical sciences. Okayama University is located in the heart of Japan approximately 3 hours west of Tokyo by Shinkansen.

For more information, please click here

Contacts:
Okayama University
1-1-1 Tsushima-naka , Kita-ku ,
Okayama 700-8530, Japan
Planning and Public Information Division

Copyright © Okayama University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Nanostructures Increase Corrosion Resistance in Metallic Body Implants May 24th, 2015

Iranian Scientists Use Magnetic Field to Transfer Anticancer Drug to Tumor Tissue May 24th, 2015

Basel physicists develop efficient method of signal transmission from nanocomponents May 23rd, 2015

This Slinky lookalike 'hyperlens' helps us see tiny objects: The photonics advancement could improve early cancer detection, nanoelectronics manufacturing and scientists' ability to observe single molecules May 23rd, 2015

Discoveries

Nanostructures Increase Corrosion Resistance in Metallic Body Implants May 24th, 2015

Iranian Scientists Use Magnetic Field to Transfer Anticancer Drug to Tumor Tissue May 24th, 2015

Basel physicists develop efficient method of signal transmission from nanocomponents May 23rd, 2015

This Slinky lookalike 'hyperlens' helps us see tiny objects: The photonics advancement could improve early cancer detection, nanoelectronics manufacturing and scientists' ability to observe single molecules May 23rd, 2015

Announcements

Nanostructures Increase Corrosion Resistance in Metallic Body Implants May 24th, 2015

Iranian Scientists Use Magnetic Field to Transfer Anticancer Drug to Tumor Tissue May 24th, 2015

Basel physicists develop efficient method of signal transmission from nanocomponents May 23rd, 2015

This Slinky lookalike 'hyperlens' helps us see tiny objects: The photonics advancement could improve early cancer detection, nanoelectronics manufacturing and scientists' ability to observe single molecules May 23rd, 2015

Battery Technology/Capacitors/Generators/Piezoelectrics/Thermoelectrics/Energy storage

Turn that defect upside down: Twin boundaries in lithium-ion batteries May 21st, 2015

Evident Thermoelectrics Acquires GMZ Energy: Investment Accelerates Launch Of Evident's Thermoelectric Modules For Waste Heat May 20th, 2015

Sandia researchers first to measure thermoelectric behavior by 'Tinkertoy' materials May 20th, 2015

Defects can 'Hulk-up' materials: Berkeley lab study shows properly managed damage can boost material thermoelectric performances May 20th, 2015

Nanobiotechnology

This Slinky lookalike 'hyperlens' helps us see tiny objects: The photonics advancement could improve early cancer detection, nanoelectronics manufacturing and scientists' ability to observe single molecules May 23rd, 2015

Supercomputer unlocks secrets of plant cells to pave the way for more resilient crops: IBM partners with University of Melbourne and UQ May 21st, 2015

Researchers develop new way to manufacture nanofibers May 21st, 2015

Nature inspires first artificial molecular pump: Simple design mimics pumping mechanism of life-sustaining proteins found in living cells May 19th, 2015

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project