Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > BIOX: Amorphous iron oxide nanostructures of bacterial origin for applications including anodes for Li ion batteries

Fig. 1. 
(A) Ocherous deposits ubiquitously seen in water pools.
(B) BIOX deposits collected from a water pool.
(C) BIOX sheaths in the deposit.
(D) A longitudinal section of a BIOX sheath enveloping bacterial cells.
(E) Chain-like BIOX
(F) A twisting BIOX bundle comprised of fibrous materials.
(G) Fibrous bundles connecting to a bacterial cell.
Fig. 1. (A) Ocherous deposits ubiquitously seen in water pools. (B) BIOX deposits collected from a water pool. (C) BIOX sheaths in the deposit. (D) A longitudinal section of a BIOX sheath enveloping bacterial cells. (E) Chain-like BIOX (F) A twisting BIOX bundle comprised of fibrous materials. (G) Fibrous bundles connecting to a bacterial cell.

Abstract:
Professor Jun Takada, Graduate School of Natural Science and Technology

"Iron-oxidizing bacteria" produce extracellular, uniquely-shaped microsheaths or fibrous bundle nanostructures comprising mainly of iron oxides—known as Biogenous iron oxides (BIOX)—ubiquitously in natural hydrosphere at ambient temperature (Fig. 1).

BIOX: Amorphous iron oxide nanostructures of bacterial origin for applications including anodes for Li ion batteries

Okayama, Japan | Posted on September 19th, 2012

Although BIOX has been generally recognized as waste, we have studied its properties for as yet unknown potential industrial applications. Our careful and focused studies revealed BIOX matrix to have the following physical properties: (i) an amorphous state; (ii) consist of organic/inorganic hybrid of nanoparticles of approximately 3 nm diameter; (iii) the nanoparticles are composed of many elements, C, O, Fe, Si and P; (iv) inorganic elements are linked via oxygen.

Importantly, BIOX has a far superior potential (for example a large capacity) as an anode material of Li-ion batteries compared to conventional carbon anodes. In addition, BIOX exhibits an amazing, wide range of functions compared with other materials currently: (i) higher catalytic potential; (ii) higher affinity to human cells; and (iii) brighter color property. All these characters are superior to those of artificially synthesized iron oxides. We are confident that the eco-friendly, nontoxic, and low-cost BIOX will be a next-generation functional material.

Detailed studies of an isolated strain of one type of the bacteria led us to elucidate the incipient mechanism of BIOX formation. Our experiments showed that extracellular secretion of bacterial polymers triggers deposition and binding of aquatic inorganics such as Fe, Si, and P, which results in the unique organic/inorganic hybrid. Further analysis is in progress for a greater insight into how the mechanism and mode of chemical linkages in the BIOX matrix contribute to the aforementioned functions.

Technical publications

H. Hashimoto et al, "Characteristics of hollow microtubes consisting of amorphous iron oxide nanoparticles produced by iron oxidizing bacteria Leptothrix ochracea," Journal of Magnetism and Magnetic Materials, 310, 2405, (2007).

T. Sakai et al, "Chemical modification of biogenous iron oxide to create an excellent enzyme scaffold," Organic Biomolecular Chemistry, 8, 336 (2010).

T. Ema et al, "Highly active lipase immobilized on biogenous iron oxide via an organic bridging group: the dramatic effect of the immobilization support on enzymatic function," Green Chemistry, 13, 3187 (2011).

T. Suzuki et al, "Environmental microbiology: silicon and phosphorus linkage with iron via oxygen in the amorphous matrix of Gallionella ferruginea stalks", Applied and Environmental Microbiology, 78, 236 (2012).

M. Furutani et al, "Initial assemblage of bacterial saccharic fibrils and element deposition to form an immature sheath in cultured Leptothrix sp. strain OUMS1", Minerals, 1, 157, (2011).

K. Mandai et al, "Iron oxide-immobilized palladium catalyst for the solvent-free Suzuki-Miyaura coupling reaction", Tetrahedron Letters, 53, 329, (2012).

H. Hashimoto et al, "Preparation, microstructure, and colour tone of microtubule material composed of hematite/amorphous-silicate nanocomposite from iron oxide of bacterial origin", Dyes and Pigments. Available online 6 July 2012. (doi. 10.1016/j.dyepig.2012.06.024).

####

About Okayama University
Okayama University is one of the largest comprehensive universities in Japan with roots going back to the Medical Training Place sponsored by the Lord of Okayama and established in 1870. Now with 1,300 faculty and 14,000 students, the University offers courses in specialties ranging from medicine and pharmacy to humanities and physical sciences. Okayama University is located in the heart of Japan approximately 3 hours west of Tokyo by Shinkansen.

For more information, please click here

Contacts:
Okayama University
1-1-1 Tsushima-naka , Kita-ku ,
Okayama 700-8530, Japan
Planning and Public Information Division

Copyright © Okayama University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Further improvement of qubit lifetime for quantum computers: New technique removes quasiparticles from superconducting quantum circuits December 9th, 2016

Chemical trickery corrals 'hyperactive' metal-oxide cluster December 8th, 2016

Researchers peer into atom-sized tunnels in hunt for better battery: May improve lithium ion for larger devices, like cars December 8th, 2016

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D: Up-close, real-time, chemical-sensitive 3-D imaging offers clues for reducing cost/improving performance of catalysts for fuel-cell-powered vehicles and other applications December 8th, 2016

Discoveries

Further improvement of qubit lifetime for quantum computers: New technique removes quasiparticles from superconducting quantum circuits December 9th, 2016

Chemical trickery corrals 'hyperactive' metal-oxide cluster December 8th, 2016

Researchers peer into atom-sized tunnels in hunt for better battery: May improve lithium ion for larger devices, like cars December 8th, 2016

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D: Up-close, real-time, chemical-sensitive 3-D imaging offers clues for reducing cost/improving performance of catalysts for fuel-cell-powered vehicles and other applications December 8th, 2016

Announcements

Further improvement of qubit lifetime for quantum computers: New technique removes quasiparticles from superconducting quantum circuits December 9th, 2016

Chemical trickery corrals 'hyperactive' metal-oxide cluster December 8th, 2016

Researchers peer into atom-sized tunnels in hunt for better battery: May improve lithium ion for larger devices, like cars December 8th, 2016

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D: Up-close, real-time, chemical-sensitive 3-D imaging offers clues for reducing cost/improving performance of catalysts for fuel-cell-powered vehicles and other applications December 8th, 2016

Battery Technology/Capacitors/Generators/Piezoelectrics/Thermoelectrics/Energy storage

Researchers peer into atom-sized tunnels in hunt for better battery: May improve lithium ion for larger devices, like cars December 8th, 2016

Novel Electrode Structure Provides New Promise for Lithium-Sulfur Batteries December 3rd, 2016

A Phone That Charges in Seconds? UCF Scientists Bring it Closer to Reality November 21st, 2016

'Back to the Future' inspires solar nanotech-powered clothing November 15th, 2016

Nanobiotechnology

Arrowhead Pharmaceuticals to Webcast Fiscal 2016 Year End Results December 7th, 2016

Fast, efficient sperm tails inspire nanobiotechnology December 5th, 2016

Deep insights from surface reactions: Researchers use Stampede supercomputer to study new chemical sensing methods, desalination and bacterial energy production December 2nd, 2016

Nanobiotix Provides Update on Global Development of Lead Product NBTXR3: Seven clinical trials across the world: More than 2/3 of STS patients recruited in the “act.in.sarc” Phase II/III trial: Phase I/II prostate cancer trial now recruiting in the U.S. November 28th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project