Nanotechnology Now

Our NanoNews Digest Sponsors



Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > Rice University takes the measure of nanotubes: New technique takes the tedium out of analyzing batches of single-walled carbon nanotubes

Abstract:
A Rice University laboratory has come up with a one-size-fits-almost-all way to measure batches of single-walled nanotubes that promises to help researchers and industry make more efficient use of the wondrous carbon material.



This video shows single-walled carbon nanotubes undergoing Brownian motion in solution. Image analysis software developed at Rice University tracks each individual nanotube's movement and relates that movement to the tube's length. The colors represent different individual nanotubes and the lines show each nanotube's trajectory.

(Credit: Jason Streit/Rice University)

Rice University takes the measure of nanotubes: New technique takes the tedium out of analyzing batches of single-walled carbon nanotubes

Houston, TX | Posted on September 18th, 2012

Nanotubes grown in a single batch can range in length from a few to thousands of nanometers (billionths of a meter). Until now, the only practical method for measuring them was by imaging with an expensive atomic force microscope (AFM).

But with the new technique from the Rice lab of chemist Bruce Weisman, revealed this month in the American Chemical Society journal ACS Nano, researchers will be able to carry out these analyses more quickly and with less manual labor.

The end product is a histogram that shows the distribution of lengths in a batch of nanotubes that, individually, are 50,000 times thinner than a human hair

This is just the kind of thing researchers want to know because, even at that scale, the details loom large. When used to deliver strands of DNA or drugs, for example, single-walled carbon nanotubes 200-300 nanometers long seem easiest for cells to absorb. Other applications require longer nanotubes, for example in high-tech composite materials for air- and spacecraft that need the strength and load transfer efficiency offered by longer tubes.

Jason Streit, a graduate student and lead author of the paper, spent two years developing an experimental method and image processing algorithm able to pick out and track batches of nanotubes floating in solution in a tiny well, about a millimeter across and a little less than two micrometers deep.

The highly automated technique allows him to analyze batches of about 800 nanotubes in two hours. "The main way to measure lengths until now has been with AFM," he said. "For that, you have to prepare a sample, look at it under a microscope, make sure that contaminants have been removed, record images and then measure the lengths. It can take hours and hours for most workers."

The new process, called length analysis by nanotube diffusion (LAND), is much simpler. Although it

only observes semiconducting single-walled nanotubes, which are naturally fluorescent at near-infrared wavelengths, it should help researchers simplify the characterization of nanotube batches.

"Different lengths have different utilities and functions in applications," said Weisman, a professor of chemistry and a pioneer in the science of nanotube fluorescence. "Some applications need a certain short length, while there are others where longer is better. And currently, nanotube length distributions are poorly controlled.

"So one goal is to get more control over the lengths of your nanotubes, and to do that you need to develop separation methods. To develop separation methods, you need good characterization tools."

Co-author Sergei Bachilo, a research scientist at Rice, compared the need for different-size nanotubes to a shoe store, where one size definitely does not fit all. "It wouldn't work very well if the store only had shoes in the average size," he said.

Like dust in a shaft of light, nanotubes in a liquid environment move around due to Brownian motion. It's that inherent movement that reveals their lengths. So Streit takes video. The resulting movies look like a field of stars blinking and wandering in the night sky, but from those frames he is able to extract trajectories that tell him how long each individually tracked nanotube is. The software also automatically compiles the statistical data to make the histogram.

Some special computations are necessary to account for nanotubes that show "fragmented trajectories," when a tube disappears behind another or leaves the field of view for a few frames.

The shorter nanotubes (below a few dozen nanometers in length) are hard to capture on video. "They're dimmer and they move faster, so sometimes they're just a blur," Weisman said. "One of the tricks Jason uses is to make the liquid in which they're moving more viscous," simply by adding a special sugar. "That slows them down enough to give us a better view.

"We hope that this will be a valuable tool for basic and applied research," Weisman said. "Right in our laboratory, we're already doing basic photophysical studies in which this method plays a crucial part.

"Diagnostics that are slow and cumbersome just don't get used," he said. "That's simply the truth. And when you convert to a method that's fast and easy, people will use it a lot more. It not only speeds things up, it leads scientists into activities they never would have undertaken before.

"This is going to be an important method for a lot of what we do around here, and hopefully for other labs as well," Weisman said.

The paper's co-authors include Anton V. Naumov of Ensysce Biosciences, who earned his doctorate at Rice in 2011 and has a complimentary appointment at the university; and Constantine Khripin and Ming Zheng of the polymers division of the National Institute of Standards and Technology.

The research was supported by the Welch Foundation and the National Science Foundation.

####

About Rice University
Located on a 300-acre forested campus in Houston, Rice University is consistently ranked among the nation's top 20 universities by U.S. News & World Report. Rice has highly respected schools of Architecture, Business, Continuing Studies, Engineering, Humanities, Music, Natural Sciences and Social Sciences and is home to the Baker Institute for Public Policy. With 3,708 undergraduates and 2,374 graduate students, Rice's undergraduate student-to-faculty ratio is 6-to-1. Its residential college system builds close-knit communities and lifelong friendships, just one reason why Rice has been ranked No. 1 for best quality of life multiple times by the Princeton Review and No. 4 for "best value" among private universities by Kiplinger's Personal Finance. To read "What they're saying about Rice," go to www.rice.edu/nationalmedia/Rice.pdf.

For more information, please click here

Contacts:
David Ruth
713-348-6327


Mike Williams
713-348-6728

Copyright © Rice University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Read the abstract at:

Related News Press

News and information

New research project supports internationalisation in nano-research: Launch of new “Baltic Sea Network” November 22nd, 2014

3rd Iran-Proposed Nano Standard Approved by International Standard Organization November 22nd, 2014

NMTI announces breakthrough solutions for HAMR nanoantenna for next-generation ultra-high density magnetic storage November 21st, 2014

Canatu Launches CNB In-Mold Film for Transparent Touch on 3D Surfaces –in Cars, Household Appliances, Wearables, Portables November 20th, 2014

Videos/Movies

Purdue 3-D printing innovation capable of making stronger, lighter metal works for auto, aerospace industries November 20th, 2014

New way to move atomically thin semiconductors for use in flexible devices November 13th, 2014

A billion holes can make a battery November 10th, 2014

Manipulating complex molecules by hand: New method in scanning probe microscopy: Jülich researchers create a word using 47 molecules November 6th, 2014

Govt.-Legislation/Regulation/Funding/Policy

New research project supports internationalisation in nano-research: Launch of new “Baltic Sea Network” November 22nd, 2014

3rd Iran-Proposed Nano Standard Approved by International Standard Organization November 22nd, 2014

NMTI announces breakthrough solutions for HAMR nanoantenna for next-generation ultra-high density magnetic storage November 21st, 2014

Quantum mechanical calculations reveal the hidden states of enzyme active sites November 20th, 2014

Nanotubes/Buckyballs

Tesla NanoCoatings Increasing Use of SouthWest NanoTechnologies Carbon Nanotubes (CNTs) for its Infrastructure Coatings and Paints: High Quality SMW™ Specialty Multi-wall Carbon Nanotubes Incorporated into Teslan®-brand coatings used by Transportation, Oil and Gas Companies November 19th, 2014

Graphene/nanotube hybrid benefits flexible solar cells: Rice University labs create novel electrode for dye-sensitized cells November 17th, 2014

SouthWest NanoTechnologies to Demonstrate 3D Capacitive Touch Sensor Featuring Transparent, Thermoformed Carbon Nanotube Ink at Printed Electronics USA 2014 (Booth J25) -- “Conductive and Semiconducting Single-Wall Carbon Nanotube Inks” will be Topic of Company Presentation November 10th, 2014

Neural Canals Produced in Iran for Recovery of Sciatica Nerve November 8th, 2014

Announcements

New research project supports internationalisation in nano-research: Launch of new “Baltic Sea Network” November 22nd, 2014

3rd Iran-Proposed Nano Standard Approved by International Standard Organization November 22nd, 2014

NMTI announces breakthrough solutions for HAMR nanoantenna for next-generation ultra-high density magnetic storage November 21st, 2014

Nano Sorbents Able to Remove Pollutions Caused by Oil Derivatives November 20th, 2014

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More












ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE