Nanotechnology Now

Our NanoNews Digest Sponsors


Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > New device to detect respiratory diseases

Abstract:
Millions of people suffer each year from viral diseases such as flu. These ailments develop quickly and can spread rapidly - at huge cost to the healthcare system and sometimes with severe consequences for the patient. Globally, flu epidemics are responsible for at least 500,000 deaths each year, with the very young and the elderly being at particular risk.

New device to detect respiratory diseases

Newcastle upon Tyne, UK | Posted on September 18th, 2012

The speed of medical response is vital, as antiviral drugs are only effective if taken within two to three days after the onset of symptoms - so doctors need a rapid, simple and low-cost test that can be carried out at the clinic or even the patient's own bedside.

The current "gold standard" test for detecting these viruses is based on polymerase chain reaction (PCR) technology. This test can't be done at the patient's bedside, however - the sample must be sent to a central laboratory for processing, which causes delays in diagnosis and treatment.

So in 2008 a consortium was created in North East England to devise a solution to this problem. Led by UK nano-biotechnology firm Orla Protein Technologies, the partners in the VIRASENS project included Newcastle University professors Jeremy Lakey and Geoffrey Toms, the UK's Health Protection Agency's Public Health Laboratory in Newcastle and regional technology centre RTC North.

The intention was to create a device which would allow doctors and paramedics to perform rapid near-patient testing without the need for complex equipment. A successful outcome would improve the speed of treatment, help to contain the outbreak, benefit patients and reduce the cost to the healthcare system.

The £1.1m project, part-funded by the Technology Strategy Board, the UK government's innovation agency, has successfully developed biosensors for three of the main viral culprits - the Influenza A and B viruses and Respiratory Syncytial Virus (RSV). It has also resulted in the creation of a new company, OJ-Bio Ltd, to commercialise the technology.

The Health Protection Agency collected nasal secretions, nose/throat swabs and nasal aspirates from patients and used these samples to test the consortium's technology - Surface Acoustic Wave (SAW) biosensors - against the current benchmark PCR method, as well as another commercially available test.

The results showed that the new SAW biosensors gave results in around 10 minutes, had good levels of diagnostic sensitivity for the three test viruses and did not give false positives - they demonstrated 100% specificity even when other viral analytes were present.

Equally promising is the fact that the SAW biosensors have the potential to communicate the results via wireless networks or a smart phone connection, so that further medical attention can be given if needed. This means that as well as being used in clinics, devices based on the technology could be used for community or home use.

SAW chips are already mass manufactured for use in mobile phones. What the VIRASENS project has done is find a way to coat SAW chips with proteins oriented on the device surface to give highly specific responses when they come into contact with samples containing the disease concerned. The reaction that takes place is turned into an electronic signal which can be combined with a small reader to transmit and receive data.

Dr Andrew Sails, Head of Molecular Diagnostics and R&D at the Health Protection Agency Public Health Laboratory in Newcastle says "This is very exciting technology which has the potential to revolutionise point of care testing for infectious diseases."

The company formed to commercialise the technology is Newcastle-based OJ-Bio, a joint venture involving global electronics company Japan Radio Company (JRC) who provide the SAW chip expertise and Orla Protein Technologies, the UK company that provides the protein surface technology.

Dr. Dale Athey, CEO of OJ-Bio, said: "The VIRASENS results are a great boost for our technology and allow us to approach major companies who will want to produce and sell these devices. We are also developing products for other diseases, as the technology works for any immunoassay based test and on samples from blood or urine, as well as saliva".

The company also recently announced that it is starting clinical trials of a SAW device for the point of care detection of periodontal gum disease - another infection with huge economic impact, estimated at £2.78 billion per year in the UK alone.

####

About OJ-Bio
OJ-Bio is a joint venture between Orla Protein Technologies Ltd and Japan Radio Co. Ltd (JRC). For more information see www.oj-bio.com.

About Orla Protein Technologies

Orla Protein Technologies Ltd is a nano-biotechnology company focused on developing high-performance biosurfaces with applications in cell culture, life science tools, reagents and diagnostics. Orla’s development was supported by investment from NEL Capital and support from the regional development agency, One NorthEast. For more information see www.orlaproteins.com

About Japan Radio Company

Japan Radio Co. Ltd (JRC) is a major Japanese company with global interests in communications and electronics. For more information see www.jrc.co.jp/eng/

About the Health Protection Agency

The Health Protection Agency is an independent UK organisation that was set up by the government in 2003 to protect the public from threats to their health from infectious diseases and environmental hazards. In April 2013, subject to the usual approvals procedures for establishing new bodies, the Health Protection Agency will become part of a new organisation called Public Health England, an executive agency of the Department of Health. To find out more, visit our website: http://www.hpa.org.uk or follow us on Twitter @HPAuk or ‘Like’ us on Facebook at www.facebook.com/HealthProtectionAgency

About the Technology Strategy Board

The Technology Strategy Board is the UK’s innovation agency. Its goal is to accelerate economic growth by stimulating and supporting business-led innovation. Sponsored by the Department for Business, Innovation and Skills (BIS), the Technology Strategy Board brings together business, research and the public sector, supporting and accelerating the development of innovative products and services to meet market needs, tackle major societal challenges and help build the future economy. For more information please visit www.innovateuk.org

For more information, please click here

Contacts:
Dr. Ian Robson
Consultant, OJ-Bio
Tel +44 (0) 191 487 5961
Mob +44 (0) 7792 871190

Copyright © OJ-Bio

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Nanoparticles present sustainable way to grow food crops May 1st, 2016

Searching for a nanotech self-organizing principle May 1st, 2016

Clay nanotube-biopolymer composite scaffolds for tissue engineering May 1st, 2016

Cooling graphene-based film close to pilot-scale production April 30th, 2016

Nanomedicine

Clay nanotube-biopolymer composite scaffolds for tissue engineering May 1st, 2016

Nanoparticles hold promise as double-edged sword against genital herpes April 28th, 2016

Arrowhead Pharmaceuticals Files for Regulatory Clearance to Begin Phase 1/2 Study of ARC-521 April 28th, 2016

The Translational Research Center at the University Hospital of Erlangen in Germany uses the ZetaView from Particle Metrix to quantify extracellular vesicles such as exosomes April 28th, 2016

Announcements

Nanoparticles present sustainable way to grow food crops May 1st, 2016

Clay nanotube-biopolymer composite scaffolds for tissue engineering May 1st, 2016

Cooling graphene-based film close to pilot-scale production April 30th, 2016

Personal cooling units on the horizon April 29th, 2016

Tools

Exploring phosphorene, a promising new material April 29th, 2016

JPK reports on the use of a NanoWizard AFM system at the University of Kaiserslautern to study the interaction of bacteria with microstructured surfaces April 28th, 2016

Chemists use DNA to build the world's tiniest thermometer April 27th, 2016

Bruker Introduces Dimension FastScan Pro Industrial AFM: Providing Nanometer-Resolution at High Scan Rates for up to 300-mm Samples April 26th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic