Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > NUS Researchers’ Novel Use of Nanoparticles Target Non-invasive Treatment for Deep Cancer

NIR is a safe light as opposed to UV light, which could cause damage to cells. NIR can also penetrate deeper into tissues to target tumours. Graphic by Mr Muthu Kumara Gnananasammandhan.
NIR is a safe light as opposed to UV light, which could cause damage to cells. NIR can also penetrate deeper into tissues to target tumours. Graphic by Mr Muthu Kumara Gnananasammandhan.

Abstract:
National University of Singapore (NUS) researchers at the Faculty of Engineering's Department of Bioengineering have discovered a new technology that paves the way for a new safe and non-invasive method of treating deep cancer. Led by Associate Professor Zhang Yong, the team has so far, proven that their technology could inhibit tumour growth and control gene expression in mice. This is a world's first for the use of nanoparticles for non-invasive photodynamic therapy of deep cancer.

NUS Researchers’ Novel Use of Nanoparticles Target Non-invasive Treatment for Deep Cancer

Singapore | Posted on September 18th, 2012

The team's findings were published online in Nature Medicine on Monday, 17 September 2012, 1am (Singapore Time).

How does their technology work?

The team has discovered a way to control gene expression by using nanoparticles which are able to convert near-infrared (NIR) light to visible or UV light. These nanoparticles can be introduced into target sites of the patient, to do their good work.

Genes release certain proteins in our body to ensure that our internal "machinery" works well and we remain healthy. However, sometimes, the process can go awry and cause our body to malfunction, leading to various disease. But doctors can put this right by manipulating the process of gene
expression by using UV light. However, UV light may cause more harm than good.

Assoc Prof Zhang, the team leader, said: "NIR, besides being non-toxic, is also able to penetrate deeper into our tissues. When NIR reaches the desired places in the body of the patient, the nanoparticles which we have invented, are able to convert the NIR back to UV light (up-conversion) to effectively
activate the genes in the way desired - by controlling the amount of proteins expressed each time, when this should take place, as well as how long it should take place."

Their findings from this study were earlier published in a prestigious journal, Proceedings of the
National Academy of Sciences, USA in May 2012.

As the up-conversion nanoparticles can also be used to produce visible light, the team has extended its application to other light-based therapies. Conventional light therapy for treating tumours uses visible light to activate light sensitive drugs that can kill cancer cells. However, such visible light is not penetrative enough to reach deep-seated tumors. The team's method of employing NIR is able to penetrate much deeper. The team's findings were just published online in Nature Medicine.

Their novel use of nanoparticles made news in 2010. Coated with mesoporous silica, these particles are each tasked to conduct "up-conversion". Their paper "Multicolour Core Shell-Structured Up-conversion Fluorescent Nanoparticles" was published in Advanced Materials in December 2008. It was one of the most highly-cited papers because of its relevance in today's science.

Wide range of applications

"By using our nanoparticles, drugs can be activated by NIR light which is safe. The light is also able to penetrate deeper into tissues to treat diseased cells," said Assoc Prof Zhang.

Co-author of the paper, PhD student Mr Muthu Kumara Gnananasammandhan added that what they have developed is a platform technology which can be customised for a wide range of applications. For example, in addition to photodynamic therapy, their innovation can also be used for bioimaging where the nanoparticles can be attached to biomarkers, which will then attach to cancer cells, allowing for better imaging of tumours and cancerous cells.

The six-member team comprises researchers from the faculties of Engineering and Science, as well as the NUS Yong Loo Lin School of Medicine.

The team is currently in collaboration with researchers at the National Cancer Centre Singapore to pursue a project funded by the Agency for Science, Technology and Research (A*STAR) that will assess the safety and efficacy of the technology to pave the way for pilot clinical trials in the future.

The team has also embarked on several other projects that make use of the up-conversion nanoparticle for point-of-care diagnostics for diseases. They have received the proof-of-concept (POC) grants from the Biomedical Engineering Programme (BEP) which is funded by the Science and Engineering Research Council (SERC) at A*STAR and the National Research Foundation, to develop these point-of-care diagnostic kits for rapid detection of bacteria and biomarkers.

####

About National University of Singapore
A leading global university centred in Asia, the National University of Singapore (NUS) is Singapore’s flagship university which offers a global approach to education and research, with a focus on Asian perspectives and expertise.

NUS has 16 faculties and schools across three campuses. Its transformative education includes a broad-based curriculum underscored by multi-disciplinary courses and cross-faculty enrichment. Over 36,000 students from 100 countries enrich the community with their diverse social and cultural perspectives.

NUS has three Research Centres of Excellence (RCE) and 22 university-level research institutes and centres. It is also a partner in Singapore’s 5th RCE. NUS shares a close affiliation with 16 national-level research institutes and centres. Research activities are strategic and robust, and NUS is well-known for its research strengths in engineering, life sciences and biomedicine, social sciences and natural sciences. It also strives to create a supportive and innovative environment to promote creative enterprise within its community.

For more information, please click here

Contacts:
Karen Loh


21 Lower Kent Ridge Road
Singapore, Singapore, 119077
+65 6516 3260

Copyright © AlphaGalileo

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Making graphene work for real-world devices: Fundamental research in phonon scattering helps researchers design graphene materials for applications April 24th, 2014

Return on investment for kit and promotion materials April 24th, 2014

Protecting olive oil from counterfeiters April 24th, 2014

NanoSafe, Inc. announces the addition of the Labconco Protector® Glove Box to its NanoSafe Tested™ registry April 23rd, 2014

Nanomedicine

Return on investment for kit and promotion materials April 24th, 2014

University of Tehran Researchers Invent Non-Enzyme Sensor to Detect Blood Sugar April 23rd, 2014

Gold nanoparticles help target, quantify breast cancer gene segments in a living cell April 23rd, 2014

QuantuMDx announce prototype handheld lab for 15 minute malaria diagnosis and drug resistance testing April 23rd, 2014

Discoveries

Making graphene work for real-world devices: Fundamental research in phonon scattering helps researchers design graphene materials for applications April 24th, 2014

Return on investment for kit and promotion materials April 24th, 2014

Protecting olive oil from counterfeiters April 24th, 2014

High-Performance, Low-Cost Ultracapacitors Built with Graphene and Carbon Nanotubes: Future devices based on technology could bridge gap between batteries and conventional capacitors in portable electronics and hybrid electric vehicles April 23rd, 2014

Announcements

Making graphene work for real-world devices: Fundamental research in phonon scattering helps researchers design graphene materials for applications April 24th, 2014

Return on investment for kit and promotion materials April 24th, 2014

Protecting olive oil from counterfeiters April 24th, 2014

High-Performance, Low-Cost Ultracapacitors Built with Graphene and Carbon Nanotubes: Future devices based on technology could bridge gap between batteries and conventional capacitors in portable electronics and hybrid electric vehicles April 23rd, 2014

NanoNews-Digest
The latest news from around the world, FREE







  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE