Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > UMass Amherst Chemists Develop Nose-like Sensor Array to 'Smell' Cancer Diagnoses

Abstract:
In the fight against cancer, knowing the enemy's exact identity is crucial for diagnosis and treatment, especially in metastatic cancers, those that spread between organs and tissues. Now chemists led by Vincent Rotello at the University of Massachusetts Amherst have developed a rapid, sensitive way to detect microscopic levels of many different metastatic cell types in living tissue. Findings appear in the current issue of the journal ACS Nano.

UMass Amherst Chemists Develop Nose-like Sensor Array to 'Smell' Cancer Diagnoses

Amherst, MA | Posted on September 14th, 2012

In a pre-clinical non-small-cell lung cancer metastasis model in mice developed by Frank Jirik and colleagues at the University of Calgary, Rotello's team at UMass Amherst use a sensor array system of gold nanoparticles and proteins to "smell" different cancer types in much the same way our noses identify and remember different odors. The new work builds on Rotello and colleagues' earlier development of a "chemical nose" array of nanoparticles and polymers able to differentiate between normal cells and cancerous ones.

Rotello explains, "With this tool, we can now actually detect and identify metastasized tumor cells in living animal tissue rapidly and effectively using the ‘nose' strategy. We were the first group to use this approach in cells, which is relatively straightforward. Now we've done it in tissues and organs, which are very much more complex. With this advance, we're much closer to the promise of a general diagnostic test."

Until now the standard method for precisely identifying cancer cells used a biological receptor approach, a protein binding to a cancer cell wall. Its major drawback is that one must know the appropriate receptor beforehand. Rotello and colleagues' breakthrough is to use an array of gold nanoparticle sensors plus green fluorescent protein (GFP) that activates in response to patterns in the proteins found in cancer cells within minutes, assigning a unique signature to each cancer.

The chemist says, "Smell ‘A' generates a pattern in the nose, a unique set of activated receptors, and these are different for every smell we encounter. Smell ‘B' has a different pattern. Your brain will instantly recognize each, even if the only time you ever smelled it was 40 years ago. In the same way, we can tune or teach our nanoparticle array to recognize many healthy tissues, so it can immediately recognize something that's even a little bit ‘off,' that is, very subtly different from normal. It's like a ‘check engine' light, and assigns a different pattern to each ‘wrong' tissue. The sensitivity is exquisite, and very powerful."

For this work, the researchers took healthy tissue and mouse tumor samples and trained the nanoparticle-GFP sensor array to recognize them and the GFP to fluoresce in the presence of metastatic tissue. Metastases are differentiated from healthy tissue in a matter of minutes, providing a rapid and very general means of detecting and identifying cancer and potentially other diseases using minimally invasive microbiopsies.

"It's sensitive to really subtle differences," says Rotello. "Even though two cheeses may look the same, our noses can tell a nicely ripe one from a cheese that's a few days past tasting good. In the same way, once we train the sensor array we can identify whether a tissue sample is healthy or not and what kind of cancer it is with very high accuracy. The sensitivity is impressive from a sample of only about 2,000 cells, a microbiopsy that's less invasive for patients."

In addition to the high sensitivity, the authors point out, their sensor is able to differentiate between low (parental) and high (bone, adrenal, and ovary) metastases, as well as between site-specific cells such as breast, liver, lung and prostate cancers.

"Overall, this array-based sensing strategy presents the prospect of unbiased phenotype screening of tissue states arising from genetic variations and differentiation state." Their next step will be to test the new sensor array method in human tissue samples, the researchers say.

####

For more information, please click here

Contacts:
Janet Lathrop

413-545-0444

Copyright © University of Massachusetts at Amherst

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Bosch announces high-performance MEMS acceleration sensors for wearables June 27th, 2017

Nanometrics to Participate in the 9th Annual CEO Investor Summit 2017: Accredited investor and publishing research analyst event held concurrently with SEMICON West and Intersolar 2017 in San Francisco June 27th, 2017

NMRC, University of Nottingham chooses the Quorum Q150 coater for its reliable and reproducible film thickness when coating samples with iridium June 27th, 2017

Picosun’s ALD solutions enable novel high-speed memories June 27th, 2017

Nanomedicine

Physicists make quantum leap in understanding life's nanoscale machinery June 27th, 2017

Researchers developed nanoparticle based contrast agent for dual modal imaging of cancer June 21st, 2017

Learning with light: New system allows optical “deep learning”: Neural networks could be implemented more quickly using new photonic technology June 12th, 2017

Mussels add muscle to biocompatible fibers: Rice University chemists develop hydrogel strings using compound found in sea creatures June 9th, 2017

Sensors

Bosch announces high-performance MEMS acceleration sensors for wearables June 27th, 2017

Leti’s Autonomous-Vehicle System Embedded in Infineon’s AURIX Platform: Leti’s Low-Power, Multi-Sensor System that Transforms Distance Data into Clear Information About the Driving Environment Will Be Demonstrated at ITS Meeting in Strasbourg, June 19-22 June 20th, 2017

New diode features optically controlled capacitance: Israeli researchers have developed a new optically tunable capacitor with embedded metal nanoparticles, creating a metal-insulator-semiconductor diode that is tunable by illumination. June 8th, 2017

Graphene and quantum dots put in motion a CMOS-integrated camera that can see the invisible May 29th, 2017

Discoveries

Physicists make quantum leap in understanding life's nanoscale machinery June 27th, 2017

Picosun’s ALD solutions enable novel high-speed memories June 27th, 2017

Atomic imperfections move quantum communication network closer to reality June 25th, 2017

Research accelerates quest for quicker, longer-lasting electronics: UC Riverside-led research makes topological insulators magnetic well above room temperatures June 25th, 2017

Announcements

Bosch announces high-performance MEMS acceleration sensors for wearables June 27th, 2017

Nanometrics to Participate in the 9th Annual CEO Investor Summit 2017: Accredited investor and publishing research analyst event held concurrently with SEMICON West and Intersolar 2017 in San Francisco June 27th, 2017

NMRC, University of Nottingham chooses the Quorum Q150 coater for its reliable and reproducible film thickness when coating samples with iridium June 27th, 2017

Picosun’s ALD solutions enable novel high-speed memories June 27th, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project