Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Nanoengineers can print 3D microstructures in mere seconds

NanoEngineering Professor Shaochen Chen has demonstrated the capability of printing three-dimensional blood vessels in mere seconds out of soft, biocompatible hydrogels. Being able to print blood vessels is essential to achieving the promise of regenerative medicine because it is how the body distributes oxygen and nutrients. Image Credit: Biomedical Nanotechnology Laboratory, Chen Research Group, UC San Diego Jacobs School of Engineering.
NanoEngineering Professor Shaochen Chen has demonstrated the capability of printing three-dimensional blood vessels in mere seconds out of soft, biocompatible hydrogels. Being able to print blood vessels is essential to achieving the promise of regenerative medicine because it is how the body distributes oxygen and nutrients.

Image Credit: Biomedical Nanotechnology Laboratory, Chen Research Group, UC San Diego Jacobs School of Engineering.

Abstract:
Nanoengineers at the University of California, San Diego have developed a novel technology that can fabricate, in mere seconds, microscale three dimensional (3D) structures out of soft, biocompatible hydrogels. Near term, the technology could lead to better systems for growing and studying cells, including stem cells, in the laboratory. Long-term, the goal is to be able to print biological tissues for regenerative medicine. For example, in the future, doctors may repair the damage caused by heart attack by replacing it with tissue that rolled off of a printer.

Nanoengineers can print 3D microstructures in mere seconds

San Diego, CA | Posted on September 13th, 2012

Reported in the journal Advanced Materials, the biofabrication technology, called dynamic optical projection stereolithography (DOPsL), was developed in the laboratory of NanoEngineering Professor Shaochen Chen. Current fabrication techniques, such as photolithography and micro-contact printing, are limited to generating simple geometries or 2D patterns. Stereolithography is best known for its ability to print large objects such as tools and car parts. The difference, says Chen, is in the micro- and nanoscale resolution required to print tissues that mimic nature's fine-grained details, including blood vessels, which are essential for distributing nutrients and oxygen throughout the body. Without the ability to print vasculature, an engineered liver or kidney, for example, is useless in regenerative medicine. With DOPsL, Chen's team was able to achieve more complex geometries common in nature such as flowers, spirals and hemispheres. Other current 3D fabrication techniques, such as two-photon photopolymerization, can take hours to fabricate a 3D part.

The biofabrication technique uses a computer projection system and precisely controlled micromirrors to shine light on a selected area of a solution containing photo-sensitive biopolymers and cells. This photo-induced solidification process forms one layer of solid structure at a time, but in a continuous fashion. The technology is part of a new biofabrication technology that Chen is developing under a four-year, $1.5 million grant from the National Institutes of Health (R01EB012597). The Obama administration in March launched a $1 billion investment in advanced manufacturing technologies, including creating the National Additive Manufacturing Innovation Institute with $30 million in federal funding to focus on 3D printing. The term "additive manufacturing" refers to the way 3D structures are built layering very thin materials.

The Chen Research Group is focused on fabrication of nanostructured biomaterials and nanophotonics for biomedical engineering applications and recently moved into the new Structural and Materials Engineering Building, which is bringing nano and structural engineers, medical device labs and visual artists into a collaborative environment under one roof.

####

For more information, please click here

Contacts:
Catherine Hockmuth

858-822-1359

Copyright © University of California - San Diego

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

NanoSummit in Luxembourg: single wall carbon nanotubes have entered our lives as we approach a nanoaugmented future November 23rd, 2017

JPK reports on the exciting research in the School of Medicine at Sungkyunkwan University (SKKU), Suwon, South Korea using the NanoWizardŽ ULTRA Speed AFM to understand the binding of transcription factor Sox2 with super enhancers November 23rd, 2017

Precision NanoSystems to host nanomedicines roundtable November 23rd, 2017

Fine felted nanotubes : Research team of Kiel University develops new composite material made of carbon nanotubes November 22nd, 2017

3D printing/Additive-manufacturing

Math gets real in strong, lightweight structures: Rice University researchers use 3-D printers to turn century-old theory into complex schwarzites November 16th, 2017

3-D-printed device builds better nanofibers: Printed nozzle system could make uniform, versatile fibers at much lower cost. October 30th, 2017

3-D-printed jars in ball-milling experiments June 29th, 2017

Rice U. chemists create 3-D printed graphene foam June 22nd, 2017

Nanomedicine

JPK reports on the exciting research in the School of Medicine at Sungkyunkwan University (SKKU), Suwon, South Korea using the NanoWizardŽ ULTRA Speed AFM to understand the binding of transcription factor Sox2 with super enhancers November 23rd, 2017

Precision NanoSystems to host nanomedicines roundtable November 23rd, 2017

Fine felted nanotubes : Research team of Kiel University develops new composite material made of carbon nanotubes November 22nd, 2017

Nanoparticles could allow for faster, better medicine: Exposure of nanoparticles in the body allows for more effective delivery November 20th, 2017

Discoveries

Fine felted nanotubes : Research team of Kiel University develops new composite material made of carbon nanotubes November 22nd, 2017

Quantum optics allows us to abandon expensive lasers in spectroscopy: Lomonosov Moscow State University scientists have invented a new method of spectroscopy November 21st, 2017

Nano-watch has steady hands November 21st, 2017

Nanoparticles could allow for faster, better medicine: Exposure of nanoparticles in the body allows for more effective delivery November 20th, 2017

Materials/Metamaterials

NanoSummit in Luxembourg: single wall carbon nanotubes have entered our lives as we approach a nanoaugmented future November 23rd, 2017

Fine felted nanotubes : Research team of Kiel University develops new composite material made of carbon nanotubes November 22nd, 2017

ICN2 researchers compute unprecedented values for spin lifetime anisotropy in graphene November 17th, 2017

Math gets real in strong, lightweight structures: Rice University researchers use 3-D printers to turn century-old theory into complex schwarzites November 16th, 2017

Announcements

NanoSummit in Luxembourg: single wall carbon nanotubes have entered our lives as we approach a nanoaugmented future November 23rd, 2017

JPK reports on the exciting research in the School of Medicine at Sungkyunkwan University (SKKU), Suwon, South Korea using the NanoWizardŽ ULTRA Speed AFM to understand the binding of transcription factor Sox2 with super enhancers November 23rd, 2017

Precision NanoSystems to host nanomedicines roundtable November 23rd, 2017

Fine felted nanotubes : Research team of Kiel University develops new composite material made of carbon nanotubes November 22nd, 2017

Nanobiotechnology

JPK reports on the exciting research in the School of Medicine at Sungkyunkwan University (SKKU), Suwon, South Korea using the NanoWizardŽ ULTRA Speed AFM to understand the binding of transcription factor Sox2 with super enhancers November 23rd, 2017

Precision NanoSystems to host nanomedicines roundtable November 23rd, 2017

Fine felted nanotubes : Research team of Kiel University develops new composite material made of carbon nanotubes November 22nd, 2017

Nanoparticles could allow for faster, better medicine: Exposure of nanoparticles in the body allows for more effective delivery November 20th, 2017

Printing/Lithography/Inkjet/Inks/Bio-printing

Math gets real in strong, lightweight structures: Rice University researchers use 3-D printers to turn century-old theory into complex schwarzites November 16th, 2017

Creation of coherent states in molecules by incoherent electrons October 21st, 2017

Graphene based terahertz absorbers: Printable graphene inks enable ultrafast lasers in the terahertz range September 13th, 2017

Researchers printed graphene-like materials with inkjet August 17th, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project