Nanotechnology Now

Our NanoNews Digest Sponsors



Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > Enzymes Dig Channels: Bio-Etching for Nanostructured Surfaces

Abstract:
In living systems, complex nano- and microscale structures perform a host of physical and biological functions. While two-dimensional patterns can be recreated fairly well with techniques like microlithography, three-dimensional structures represent a big challenge. In the journal Angewandte Chemie, American researchers have now reported a new method for the lithography-free etching of complex surface motifs with the use of biodegradable polymers and enzymes. Starting with structured microchannels, they have built an assembly for the isolation and concentration of cells from whole blood.

Enzymes Dig Channels: Bio-Etching for Nanostructured Surfaces

Germany | Posted on September 13th, 2012

A team led by Victor M. Ugaz at Texas A&M University uses proteinase K (PK), a protein-cleaving enzyme that can also break down the bioplastic polylactic acid. First, the researchers apply a mask to a small block of polylactic acid, leaving only a narrow trail. The liquid containing PK is directed through this microchannel. Wherever the enzyme comes into contact with the polylactic acid, the latter is etched away.

Within microchannels, liquids can flow past each other without appreciable mixing. The researchers use this phenomenon to make structured channels. They direct PK solution through the channels on the left and right, while allowing a protein solution flowing through the middle to inhibit the etching process. This etches neighboring channels separated by a "weir" into the polymer. In the next step, a protein solution is directed through one of the etched channels and over the central weir, while the second channel is further etched with PK. This allows one channel to remain flat while the second is made deeper. Finally, all three "tracks" are made even deeper with PK. This causes the top of the weir to be lower than the outer edges of the double channel.

To make their device, the researchers bent one such channel into a hairpin turn and put a lid over it. They allow blood spiked with tumor cells to flow through the inner, flatter channel. A buffer solution flows through the deeper outer channel. In the curve, centrifugal forces push blood cells into the outer track with the buffer. However, the small space between the top of the weir and the lid over the system only allows small blood cells to pass through. The larger tumor cells do not fit through and become more concentrated in the inner channel as the red blood cells become less concentrated. The different depths of the channels enhances this process. Rare cells like freely circulating tumor cells can be detected much more rapidly and easily when blood samples are tested by this method than by conventional methods like membrane filtration.

Special thermal preparation allows for the targeted formation of crystalline regions in the polylactic acid. PK does not degrade these regions well. This allows for the formation of defined small obstacles within the channels, which could be useful in filtration or chromatography systems.

Source: Angewandte Chemie

####

For more information, please click here

Copyright © Wiley-VCH Materials Science Journals

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Iranian Experts Clean Uranium-Contaminated Water by Nano-Particles November 23rd, 2014

Novel Method Found for Connection of Metallic Alloys to Polymers November 23rd, 2014

New research project supports internationalisation in nano-research: Launch of new “Baltic Sea Network” November 22nd, 2014

3rd Iran-Proposed Nano Standard Approved by International Standard Organization November 22nd, 2014

Nanomedicine

New research project supports internationalisation in nano-research: Launch of new “Baltic Sea Network” November 22nd, 2014

Quantum mechanical calculations reveal the hidden states of enzyme active sites November 20th, 2014

Silver Nanoparticles Produced in Iran from Forest Plants Extract November 20th, 2014

Tokyo Institute of Technology research: Protein-engineered cages aid studies of cell functions November 19th, 2014

Discoveries

Iranian Experts Clean Uranium-Contaminated Water by Nano-Particles November 23rd, 2014

Novel Method Found for Connection of Metallic Alloys to Polymers November 23rd, 2014

NMTI announces breakthrough solutions for HAMR nanoantenna for next-generation ultra-high density magnetic storage November 21st, 2014

Nano Sorbents Able to Remove Pollutions Caused by Oil Derivatives November 20th, 2014

Announcements

Iranian Experts Clean Uranium-Contaminated Water by Nano-Particles November 23rd, 2014

Novel Method Found for Connection of Metallic Alloys to Polymers November 23rd, 2014

New research project supports internationalisation in nano-research: Launch of new “Baltic Sea Network” November 22nd, 2014

3rd Iran-Proposed Nano Standard Approved by International Standard Organization November 22nd, 2014

Nanobiotechnology

Quantum mechanical calculations reveal the hidden states of enzyme active sites November 20th, 2014

Tokyo Institute of Technology research: Protein-engineered cages aid studies of cell functions November 19th, 2014

A novel method for identifying the body’s ‘noisiest’ networks November 19th, 2014

Implementation of DNA Chains in Designing Nanospin Pieces November 9th, 2014

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More












ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE