Nanotechnology Now





Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Mercury in Water, Fish Detected with Nanotechnology: Inexpensive, super-sensitive device detects even low levels of toxic metals in water, fish

The new system is comprised of a commercial strip of glass covered with a film of “hairy” nanoparticles. A kind of “nano-velcro,” it can be dipped into water to trap the pollutant and render the film electrically conductive.
The new system is comprised of a commercial strip of glass covered with a film of “hairy” nanoparticles. A kind of “nano-velcro,” it can be dipped into water to trap the pollutant and render the film electrically conductive.

Abstract:
When mercury is dumped into rivers and lakes, the toxic heavy metal can end up in the fish we eat and the water we drink. To help protect consumers from the diseases and conditions associated with mercury, researchers at Northwestern University in collaboration with colleagues at Ecole Polytechnique Fédérale de Lausanne (EPFL) in Switzerland, have developed a nanoparticle system that is sensitive enough to detect even the smallest levels of heavy metals in our water and fish.

Mercury in Water, Fish Detected with Nanotechnology: Inexpensive, super-sensitive device detects even low levels of toxic metals in water, fish

Evanston, IL | Posted on September 13th, 2012

The research was published September 9 in the journal Nature Materials.

"The system currently being used to test for mercury and its very toxic derivative, methyl mercury, is a time-intensive process that costs millions of dollars and can only detect quantities at already toxic levels," said Bartosz Grzybowski, lead author of the study. "Ours can detect very small amounts, over million times smaller than the state-of-the-art current methods. This is important because if you drink polluted water with low levels of mercury every day, it could add up and possibly lead to diseases later on. With this system consumers would one day have the ability to test their home tap water for toxic metals."

Grzybowski is the Kenneth Burgess Professor of Physical Chemistry and Chemical Systems Engineering in the Weinberg College of Arts and Sciences and the McCormick School of Engineering and Applied Science.

The new system is comprised of a commercial strip of glass covered with a film of "hairy" nanoparticles, a kind of a "nano-velcro," that can be dipped into water. When a metal cation --- a positively charged entity, such as a methyl mercury --- gets in between two hairs, the hairs close up, trapping the pollutant and rendering the film electrically conductive.

A voltage-measuring device reveals the result; the more ions there are trapped in the "nano-velcro," the more electricity it will conduct. To calculate the number of trapped particles, all one needs to do is measure the voltage across the nanostructure film. By varying the length of the nano-hairs covering the individual particles in the film, the scientists can target a particular kind of pollutant that is captured selectively. With longer "hairs," the films trap methyl mercury, shorter ones are selective to cadmium. Other metals also can be selected with appropriate molecular modifications.

The nanoparticle films cost somewhere between $1 to $10 to make, and the device to measure the currents costs a few hundred dollars, Grzybowski said. The analysis can be done in the field so the results are immediately available.

Researchers were particularly interested in detecting mercury because its most common form, methyl mercury, accumulates as one goes up the food chain, reaching its highest levels in large predatory fish such as tuna and swordfish. In the United States, France and Canada, public health authorities advise pregnant women to limit fish consumption because mercury can compromise nervous system development in the fetus.

Researchers used this system to detect levels of mercury in water from Lake Michigan, near Chicago, among other samples. Despite the high level of industry in the region, the mercury levels were extremely low.

"The goal was to compare our measurements to FDA measurements done using conventional methods," said Francesco Stellacci of EPFL, co-corresponding author of the study. "Our results fell within an acceptable range."

The researchers also tested a mosquito fish from the Florida Everglades, which is not high on the food chain and thus does not accumulate high levels of mercury in its tissues. The U.S. Geological Survey reported near-identical results after analyzing the same sample.

"This technology provides an inexpensive and practical alternative to the existing cumbersome techniques that are being utilized today," said Jiwon Kim, graduate student in Grzybowski's lab in the department of chemistry at Northwestern. "I went to Lake Michigan with our sensor and a hand-held electrometer and took measurements on-site in less than a minute. This direct measurement technique is a dream come true for monitoring toxic substances."

This work was supported by the Non-equilibrium Energy Research Center, which is an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences under grant number DE-SC0000989.

Authors of this study include: Jiwon Kim, Baudilio Tejerina, Thomas M. Hermans, Hideyuki Nakanishi, Alexander Z. Patashinski and Bartosz A. Grzybowski from the Department of Chemical and Biological Engineering and Department of Chemistry, Northwestern University; Eun Seon Cho and Francesco Stellacci, Institute of Materials, Ecole Polytechnique Fédérale de Lausanne EPFL Switzerland and Hao Jiang and Sharon C. Glotzer, Department of Chemical Engineering and Department of Materials Science and Engineering, University of Michigan.

####

For more information, please click here

Contacts:
Erin White

847-491-4888

Copyright © Northwestern University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Crystal structure and magnetism -- new insight into the fundamentals of solid state physics: HZB team decodes relationship between magnetic interactions and the distortions in crystal structure within a geometrically 'frustrated' spinel system July 7th, 2015

Down to the quantum dot: Jülich researchers develop ultrahigh-resolution 3-D microscopy technique for electric fields July 7th, 2015

Miniature Technology, Large-Scale Impact: Winner of the 2015 Lindros Award for translational medicine, Kjeld Janssen is pushing the boundaries of the emerging lab-on-a-chip technology - See more at: http://www.news.ucsb.edu/2015/015744/miniature-technology-large-scale-impact#stha July 7th, 2015

Surfing a wake of light: Researchers observe and control light wakes for the first time July 6th, 2015

Govt.-Legislation/Regulation/Funding/Policy

Surfing a wake of light: Researchers observe and control light wakes for the first time July 6th, 2015

New technology using silver may hold key to electronics advances July 2nd, 2015

NIST Group Maps Distribution of Carbon Nanotubes in Composite Materials July 2nd, 2015

Ultra-stable JILA microscopy technique tracks tiny objects for hours July 1st, 2015

Discoveries

Crystal structure and magnetism -- new insight into the fundamentals of solid state physics: HZB team decodes relationship between magnetic interactions and the distortions in crystal structure within a geometrically 'frustrated' spinel system July 7th, 2015

Down to the quantum dot: Jülich researchers develop ultrahigh-resolution 3-D microscopy technique for electric fields July 7th, 2015

Miniature Technology, Large-Scale Impact: Winner of the 2015 Lindros Award for translational medicine, Kjeld Janssen is pushing the boundaries of the emerging lab-on-a-chip technology - See more at: http://www.news.ucsb.edu/2015/015744/miniature-technology-large-scale-impact#stha July 7th, 2015

Fundamental observation of spin-controlled electrical conduction in metals: Ultrafast terahertz spectroscopy yields direct insight into the building block of modern magnetic memories July 6th, 2015

Announcements

Crystal structure and magnetism -- new insight into the fundamentals of solid state physics: HZB team decodes relationship between magnetic interactions and the distortions in crystal structure within a geometrically 'frustrated' spinel system July 7th, 2015

Down to the quantum dot: Jülich researchers develop ultrahigh-resolution 3-D microscopy technique for electric fields July 7th, 2015

Miniature Technology, Large-Scale Impact: Winner of the 2015 Lindros Award for translational medicine, Kjeld Janssen is pushing the boundaries of the emerging lab-on-a-chip technology - See more at: http://www.news.ucsb.edu/2015/015744/miniature-technology-large-scale-impact#stha July 7th, 2015

A Stretchy Mesh Heater for Sore Muscles July 6th, 2015

Environment

NIST ‘How-To’ Website Documents Procedures for Nano-EHS Research and Testing July 1st, 2015

Carnegie Mellon chemists characterize 3-D macroporous hydrogels: Methods will allow researchers to develop new 'smart' materials June 30th, 2015

The peaks and valleys of silicon: Team of USC Viterbi School of Engineering Researchers introduce new layered semiconducting materials as silicon alternative June 27th, 2015

NNI Publishes Workshop Report and Launches Web Portal on Nanosensors: Both outputs support the Nanotechnology Signature Initiative ‘Nanotechnology for Sensors and Sensors for Nanotechnology: Improving and Protecting Health, Safety, and the Environment’ June 24th, 2015

Water

Tel Aviv/Tsinghua University project uses crowd computing to improve water filtration: The research, a product of the new TAU-Tsinghua XIN Center, was conducted by 150,000 volunteers at IBM's World Community Grid July 6th, 2015

Visible Light-Sensitive Photocatalysts Used for Purification of Contaminated Water in Iran June 30th, 2015

Dais Analytic Unveils New Version of Aqualyte Membrane Technology: Updates to the Basis of the Company's Industry-Changing Nanotechnology Designed to Strengthen Position in Global Air, Energy, and Water Markets June 26th, 2015

Bacteria Cellulose, Natural Polymers with Applications in Various Industries Synthesized in Iran June 22nd, 2015

Research partnerships

Fundamental observation of spin-controlled electrical conduction in metals: Ultrafast terahertz spectroscopy yields direct insight into the building block of modern magnetic memories July 6th, 2015

Surfing a wake of light: Researchers observe and control light wakes for the first time July 6th, 2015

Tel Aviv/Tsinghua University project uses crowd computing to improve water filtration: The research, a product of the new TAU-Tsinghua XIN Center, was conducted by 150,000 volunteers at IBM's World Community Grid July 6th, 2015

Groundbreaking research to help control liquids at micro and nano scales July 3rd, 2015

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project