Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Lumericalís INTERCONNECT 2.0 Release Models Statistical Variations of Photonic Integrated Circuits Lumericalís INTERCONNECT 2.0 release provides a schematic-driven photonic integrated circuit design framework that can incorporate statistical variations in one or more circuit elem

Abstract:
Lumerical Solutions (www.lumerical.com), a Vancouver-based provider of optoelectronic component and photonic integrated circuit (PIC) design software, today announced the release of INTERCONNECT 2.0. Release 2.0 of INTERCONNECT enables PIC designers to more quickly explore the role of circuit architecture and statistical component variations on overall circuit performance. New features include an improved frequency-domain calculation engine which can compute circuit performance significantly faster, a custom s-parameter element which can accept measured or simulated data of arbitrary complexity including complete characterization data for multimode, many-port elements, and a yield calculator that produces Monte Carlo performance estimates based on statistical variations of one or more circuit parameters.

Lumericalís INTERCONNECT 2.0 Release Models Statistical Variations of Photonic Integrated Circuits Lumericalís INTERCONNECT 2.0 release provides a schematic-driven photonic integrated circuit design framework that can incorporate statistical variations in one or more circuit elem

Vancouver, Canada | Posted on September 12th, 2012

Yield Calculator Supports Different Designer Profiles

INTERCONNECT has been engineered, since the original product concept, to support both device and circuit designers. Device designers are interested in component dimensions and material compositions, often with the goal of designing new proprietary circuit elements that work well with adjacent components. Circuit designers are focused on achieving desired target performance and are often only interested in using element-level transfer functions and compact models to predict system behavior. INTERCONNECT 2.0's yield calculator, which accepts statistical variations at the element level whether they apply to physical or phenomenological parameters, continues to support both designer profiles.

Professor Lukas Chrostowski of the University of British Columbia, and Director of the NSERC CREATE Si-EPIC training program, believes that device designers will benefit from INTERCONNECT's integration with MODE Solutions and FDTD Solutions. "The software can be used to design devices such as ring resonators, waveguide Bragg gratings, arrayed waveguide gratings, and fibre grating couplers, and to study the performance of components within simple circuits," he said. "For example, reflections from components such as grating couplers often introduce undesired ripple in the optical spectrum, and this can be simulated using INTERCONNECT."

As photonic integrated circuits are complex and require multi-physics simulation, the ability to create hierarchically-defined elements from single devices like a modulator to entire transmitter subsystems is very important. Being able to experimentally verify these devices and subsystems and incorporate that data into a single design environment together with statistical variations at every level of the design hierarchy promises to streamline the design process.

"In response to ongoing requests for a framework that goes beyond idealized representations, INTERCONNECT 2.0 can incorporate statistical variations of geometrical or compact-model parameters," according to Dr. Jackson Klein, Senior Product Manager of INTERCONNECT. "Together with INTERCONNECT's hierarchical model definition, proprietary component-level IP can be easily incorporated into more sophisticated circuit models of arbitrary complexity."

INTERCONNECT's ability to model multimode, many-port circuits of arbitrary complexity and physical sophistication means it will play a critical role as designers explore circuit designs incorporating proprietary elements and ever-increasing component count. "We look forward to our ongoing discussions with industry and foundry representatives, public and private companies, and government laboratories to refine INTERCONNECT's capabilities so that it can best serve the emerging needs of the photonic integrated circuit design community," says Dr. James Pond, Lumerical's Chief Technology Officer.

University of Delaware Professor and Director of OpSIS Michael Hochberg has extensive experience working with Lumerical. "We're very happy with their tools and investment in the INTERCONNECT product," he said. "At OpSIS, our goal is to provide to anyone in the world with advanced silicon photonics processes for their own projects, while only paying for the wafer area that they use. Doing schematic-driven design is really critical for making complex photonic circuits, and to make it easy for our users to lay out and simulate systems-on-chip we are now working with Lumerical to integrate OpSIS device libraries with their tools."

####

About Lumerical Solutions, Inc.
Since its inception in 2003, Lumerical has pioneered breakthrough simulation technologies that help bring new optical product concepts to life. By empowering research and product development professionals with high performance optoelectronic design software that leverages recent advances in computing technology, Lumerical helps optical designers tackle challenging design goals and meet strict deadlines. Lumerical's design software solutions have been licensed in more than 30 countries by global technology leaders like Agilent, ASML, Bosch, Canon, Harris, Northrop Grumman, Olympus, Philips, Samsung, and STMicroelectronics, and prominent research institutions including Caltech, Harvard, Max Planck Institute, MIT, NIST, University of Tokyo and the Chinese Academy of Sciences. Discover how Lumerical can help you meet your own design objectives by visiting us online at www.lumerical.com.

About INTERCONNECT

Unlike Lumericalís component-level modeling tools, INTERCONNECT allows designers to compose conceptual schematic representations of photonic integrated circuits from interconnected multiport elements. Each circuit element can be described by analytic expressions, semi-empirical models or user-defined custom descriptions based on imported characterization data or the output of a TCAD simulator including Lumericalís FDTD Solutions, MODE Solutions, and DEVICE tools. More information about INTERCONNECT, and a free 30-day evaluation version of the product, can be found at www.lumerical.com/tcad-products/interconnect.

For more information, please click here

Contacts:
Todd Kleckner
Lumerical Solutions, Inc.
604-733-9006 Ext. 201

Copyright © Lumerical Solutions, Inc.

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

A nano-roundabout for light December 10th, 2016

Keeping electric car design on the right road: A closer look at the life-cycle impacts of lithium-ion batteries and proton exchange membrane fuel cells December 9th, 2016

Further improvement of qubit lifetime for quantum computers: New technique removes quasiparticles from superconducting quantum circuits December 9th, 2016

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D: Up-close, real-time, chemical-sensitive 3-D imaging offers clues for reducing cost/improving performance of catalysts for fuel-cell-powered vehicles and other applications December 8th, 2016

Software

Companies Now Can Bring Fast and Accurate Nanoparticle Analysis In-House November 11th, 2016

SUN shares its latest achievements during the 3rd Annual Project Meeting November 1st, 2016

Leti to Tackle Tomorrow's Research Strategies with Stanford Universityís SystemX Alliance: French R&D Center Is the First Research Institute to Join the Collaboration and Provides Bridges Between Academia and Industry, Leveraging Allianceís Potential October 4th, 2016

Park Systems Launches Park NX20 300mm Research Atomic Force Microscope with Full 300 mm Semiconductor Wafer Scan - Vastly Improving Productivity August 3rd, 2016

Chip Technology

A nano-roundabout for light December 10th, 2016

Further improvement of qubit lifetime for quantum computers: New technique removes quasiparticles from superconducting quantum circuits December 9th, 2016

Chemical trickery corrals 'hyperactive' metal-oxide cluster December 8th, 2016

Leti IEDM 2016 Paper Clarifies Correlation between Endurance, Window Margin and Retention in RRAM for First Time: Paper Presented at IEDM 2016 Offers Ways to Reconcile High-cycling Requirements and Instability at High Temperatures in Resistive RAM December 6th, 2016

Announcements

A nano-roundabout for light December 10th, 2016

Keeping electric car design on the right road: A closer look at the life-cycle impacts of lithium-ion batteries and proton exchange membrane fuel cells December 9th, 2016

Further improvement of qubit lifetime for quantum computers: New technique removes quasiparticles from superconducting quantum circuits December 9th, 2016

Chemical trickery corrals 'hyperactive' metal-oxide cluster December 8th, 2016

Photonics/Optics/Lasers

A nano-roundabout for light December 10th, 2016

ANU invention to inspire new night-vision specs December 7th, 2016

Shape matters when light meets atom: Mapping the interaction of a single atom with a single photon may inform design of quantum devices December 4th, 2016

Controlled electron pulses November 30th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project