Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > New Method for Synthesis of Noble Metal-Based Nanoparticles on Various Substrates

Abstract:
Iranian researchers at the University of Isfahan developed a simple yet efficient method for the synthesis of noble metal-based alloy nanoparticles on different types of substrates.

New Method for Synthesis of Noble Metal-Based Nanoparticles on Various Substrates

Tehran, Iran | Posted on September 11th, 2012

Particularly tested for carbon based substrates such as carbon nanocabon tubes, the proposed method has enabled the synthesis of platinum-cobalt nanoparticles featuring lower dimensions, narrower size distributions and higher stabilities compared to the conventional methods.

The major goal of the mentioned research work has been set as preparation of a potent Pt-based catalyst for methanol oxidation reactions occurring in the fuel cells by impregnation of the catalyst precursors upon suitably chosen substrates. During recent years, Direct Methanol Fuel Cells (DMFCs) have attracted a great deal of attention as a clean and green source of energy for various electronic devices and vehicles.

"The most innovative feature of our proposed method is the fabrication of Pt-based alloys at high temperatures in form of 3-nm-sized particles on CNT substrates such that they exhibit spectacularly high thermal stability," Dr. Rozgar Ahmadi, a member of the research group, said.

"This is due to the utilization of elemental sulfur as a modifying agent in course of the synthesis process which allows for obtaining smaller particles, better dispersions and higher degree of alloying. In the final step of synthesis, the used sulfur is totally eliminated through a thermal treatment process in order to avoid any possible catalyst poisoning," he added.

The above-mentioned synthesis technique has proved to be simple and straightforward and does not require any costly or complicated apparatus. In addition, the method seems attractive from a commercialization point of view as its scale-up is claimed smooth and trouble-free.

An elaborate scientific article discussing the research work, "Pt-Co alloy nanoparticles synthesized on sulfur-modified carbon nanotubes as electrocatalysts for methanol electrooxidation reaction", has been published in Journal of Catalysis, volume 292, 2012, pages 81-89.

####

For more information, please click here

Copyright © Fars News Agency

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Application of air-sensitive semiconductors in nanoelectronics: 2-D semiconductor gallium selenide in encapsulated nanoelectronic devices September 22nd, 2017

Researchers set time limit for ultrafast perovskite solar cells September 22nd, 2017

DNA triggers shape-shifting in hydrogels, opening a new way to make 'soft robots' September 21st, 2017

Physicists develop new recipes for design of fast single-photon gun Physicists develop high-speed single-photon sources for quantum computers of the future September 21st, 2017

Chemistry

Copper catalyst yields high efficiency CO2-to-fuels conversion: Berkeley Lab scientists discover critical role of nanoparticle transformation September 20th, 2017

Chemical hot spots: Scanning tunneling microscopy measurements identify active sites on catalyst surfaces September 7th, 2017

More durable, less expensive fuel cells: University of Delaware researchers have developed a new technology that could speed up the commercialization of fuel cell vehicles September 5th, 2017

Research shows how DNA molecules cross nanopores: Study could inform biosensors, manufacturing, and more September 5th, 2017

Chip Technology

Application of air-sensitive semiconductors in nanoelectronics: 2-D semiconductor gallium selenide in encapsulated nanoelectronic devices September 22nd, 2017

Physicists develop new recipes for design of fast single-photon gun Physicists develop high-speed single-photon sources for quantum computers of the future September 21st, 2017

GLOBALFOUNDRIES Unveils Vision and Roadmap for Next-Generation 5G Applications: Technology platforms are uniquely positioned to enable a new era of ‘connected intelligence’ with the transition to 5G September 20th, 2017

GLOBALFOUNDRIES Delivers Custom 14nm FinFET Technology for IBM Systems: Jointly developed 14HP process is world’s only technology that leverages both FinFET and SOI September 20th, 2017

Nanotubes/Buckyballs/Fullerenes/Nanorods

How to draw electricity from the bloodstream: A one-dimensional fluidic nanogenerator with a high power-conversion efficiency September 11th, 2017

Silk could improve sensitivity, flexibility of wearable body sensors August 20th, 2017

Regulation of two-dimensional nanomaterials: New driving force for lithium-ion batteries July 26th, 2017

Killing cancer in the heat of the moment: A new method efficiently transfers genes into cells, then activates them with light. This could lead to gene therapies for cancers July 9th, 2017

Announcements

Application of air-sensitive semiconductors in nanoelectronics: 2-D semiconductor gallium selenide in encapsulated nanoelectronic devices September 22nd, 2017

Researchers set time limit for ultrafast perovskite solar cells September 22nd, 2017

DNA triggers shape-shifting in hydrogels, opening a new way to make 'soft robots' September 21st, 2017

Physicists develop new recipes for design of fast single-photon gun Physicists develop high-speed single-photon sources for quantum computers of the future September 21st, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project