Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > Measuring mercury levels: Nano-velcro detects water-borne toxic metals

Coal plants like this one in West Chicago release mercury into the atmosphere which can end up in the water supply. This plant, the Crawford Generating Station, is among the last coal-fired plants to shut down in the city, and this move could help bring the already low mercury content in nearby Lake Michigan down even further. Image credit: Steve Geer, Chicago Image Gate
Coal plants like this one in West Chicago release mercury into the atmosphere which can end up in the water supply. This plant, the Crawford Generating Station, is among the last coal-fired plants to shut down in the city, and this move could help bring the already low mercury content in nearby Lake Michigan down even further.

Image credit: Steve Geer, Chicago Image Gate

Abstract:
A strip of glass covered in hairy nanoparticles can cheaply and conveniently measure mercury, which attacks the nervous system, and other toxic metals in fluids.

Measuring mercury levels: Nano-velcro detects water-borne toxic metals

Ann Arbor, MI | Posted on September 10th, 2012

Researchers at the Swiss Federal Institute of Technology (EPFL), Northwestern University and the University of Michigan found that their new method can measure methyl mercury, the most common form of mercury pollution, at unprecedentedly small concentrations. The system, which could test for metal toxins in drinking water and fish, is reported in the current edition of Nature Materials.

Methyl mercury dumped in lakes and rivers accumulates in fish, reaching its highest levels in large, predatory fish such as tuna and swordfish. Young children and pregnant women are advised to avoid eating these fish because mercury can affect the developing brain and nervous system. While metals in drinking water are measured periodically, these measurements say little about migratory fish, including tuna, which may pass through more polluted areas.

"The problem is that current monitoring techniques are too expensive and complex," said researcher Francesco Stellacci, the Constellium Chair holder at EPFL. "With a conventional method, you have to send samples to the laboratory, and the analysis equipment costs several million dollars."

Using the device invented by the Swiss-American team, measuring the mercury levels in water or dissolved fish meat is as simple as dipping a strip of coated glass into the fluid. Metals and metallic molecules, such as methyl mercury, typically become positively charged ions in water. When these ions drift between the hairy nanoparticles, the hairs close up, trapping the pollutant. Passing a current over the strip of glass reveals how many ions are caught in the "nano-velcro." Each ion allows the strip to conduct more electricity.

U-M researchers Hao Jiang and Sharon Glotzer, the Churchill Professor of Chemical Engineering, performed computer simulations that investigated how the nano-velcro traps pollutants. They showed that the hairy nanoparticles are choosey about which ions they capture, confirming that the strips can give reliable measures of specific toxins as demonstrated by the experimental findings of the Swiss group.

"By making detection of pollutants and toxins cheap and easy to do, more testing at the source will lead to safer foods on the dinner table and in kids' lunchboxes," Glotzer said.

The scientists targeted particular pollutants by varying the length of the nano-hairs. This approach is especially successful for methyl mercury, and the device can measure it with record-breaking accuracy, detecting concentrations as low as 600 methyl mercury ions per cubic centimeter of water. Fortunately, that level of precision won't break the bank. The researchers estimate that the coated glass strips could cost less than 10 dollars each, while the measurement device will cost only a few hundred dollars. It could gauge the concentration of metals onsite and within minutes.

The researchers tested their method in Lake Michigan, near Chicago.

"The goal was to compare our measurements to FDA measurements done using conventional methods," Stellacci said.

Despite the industrial activity in the region, mercury levels were extremely low, in agreement with the FDA's analysis. The team also tested a mosquito fish from the Everglades.

"We measured tissue that had been dissolved in acid. The goal was to see if we could detect even very minuscule quantities," said Bartosz Grzybowski, the K. Burgess Professor of Physical Chemistry and Chemical Systems Engineering at Northwestern University, noting the species is too low on the food chain to accumulate high levels of mercury.

The United States Geological Survey reported near-identical results after analyzing the same sample.

"With this technology, it will be possible to conduct tests on a much larger scale in the field, or even in fish before they are put on the market," said researcher Hyewon Kim, MIT student visiting EPFL.

Funding for this research came from ENI, via the ENI-MIT Alliance; the U.S. Defense Threat Reduction Agency via a grant to MIT and U-M; and the U.S. Department of Energy via a Nonequilibrium Energy Research Center grant to Northwestern and the U-M.

####

For more information, please click here

Contacts:
Katherine McAlpine
Phone: (734) 763-4386

Copyright © University of Michigan

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Sharon Glotzer:

Francesco Stellacci:

Bartosz Grzybowski:

Related News Press

News and information

Special UO microscope captures defects in nanotubes: University of Oregon chemists provide a detailed view of traps that disrupt energy flow, possibly pointing toward improved charge-carrying devices October 21st, 2014

Super stable garnet ceramics may be ideal for high-energy lithium batteries October 21st, 2014

Could I squeeze by you? Ames Laboratory scientists model molecular movement within narrow channels of mesoporous nanoparticles October 21st, 2014

Detecting Cancer Earlier is Goal of Rutgers-Developed Medical Imaging Technology: Rare earth nanocrystals and infrared light can reveal small cancerous tumors and cardiovascular lesions October 21st, 2014

Govt.-Legislation/Regulation/Funding/Policy

Special UO microscope captures defects in nanotubes: University of Oregon chemists provide a detailed view of traps that disrupt energy flow, possibly pointing toward improved charge-carrying devices October 21st, 2014

Super stable garnet ceramics may be ideal for high-energy lithium batteries October 21st, 2014

Could I squeeze by you? Ames Laboratory scientists model molecular movement within narrow channels of mesoporous nanoparticles October 21st, 2014

Crystallizing the DNA nanotechnology dream: Scientists have designed the first large DNA crystals with precisely prescribed depths and complex 3D features, which could create revolutionary nanodevices October 20th, 2014

Sensors

Imaging electric charge propagating along microbial nanowires October 20th, 2014

Graphenea opens US branch October 16th, 2014

IRLYNX and CEA-Leti to Streamline New CMOS-based Infrared Sensing Modules Dedicated to Human-activities Characterization October 15th, 2014

Nanodevices for clinical diagnostic with potential for the international market: The development is based on optical principles and provides precision and allows saving vital time for the patient October 15th, 2014

Discoveries

Special UO microscope captures defects in nanotubes: University of Oregon chemists provide a detailed view of traps that disrupt energy flow, possibly pointing toward improved charge-carrying devices October 21st, 2014

Super stable garnet ceramics may be ideal for high-energy lithium batteries October 21st, 2014

Could I squeeze by you? Ames Laboratory scientists model molecular movement within narrow channels of mesoporous nanoparticles October 21st, 2014

Detecting Cancer Earlier is Goal of Rutgers-Developed Medical Imaging Technology: Rare earth nanocrystals and infrared light can reveal small cancerous tumors and cardiovascular lesions October 21st, 2014

Announcements

Special UO microscope captures defects in nanotubes: University of Oregon chemists provide a detailed view of traps that disrupt energy flow, possibly pointing toward improved charge-carrying devices October 21st, 2014

Super stable garnet ceramics may be ideal for high-energy lithium batteries October 21st, 2014

Could I squeeze by you? Ames Laboratory scientists model molecular movement within narrow channels of mesoporous nanoparticles October 21st, 2014

Detecting Cancer Earlier is Goal of Rutgers-Developed Medical Imaging Technology: Rare earth nanocrystals and infrared light can reveal small cancerous tumors and cardiovascular lesions October 21st, 2014

Military

Crystallizing the DNA nanotechnology dream: Scientists have designed the first large DNA crystals with precisely prescribed depths and complex 3D features, which could create revolutionary nanodevices October 20th, 2014

Imaging electric charge propagating along microbial nanowires October 20th, 2014

1980s aircraft helps quantum technology take flight October 20th, 2014

Tailored flexible illusion coatings hide objects from detection October 13th, 2014

Environment

Imaging electric charge propagating along microbial nanowires October 20th, 2014

Physicists build reversible laser tractor beam October 20th, 2014

Plastic nanoparticles also harm freshwater organisms October 18th, 2014

New Nanocomposites Help Elimination of Toxic Dyes October 15th, 2014

Water

New Nanocomposites Help Elimination of Toxic Dyes October 15th, 2014

Fast, cheap nanomanufacturing: Arrays of tiny conical tips that eject ionized materials could fabricate nanoscale devices cheaply October 4th, 2014

Production of Filters for Separation of Water from Petroleum Products in Iran October 1st, 2014

Malvern Instruments & Aurora Water conference presentation illustrates value and cost-saving potential of on-line zeta potential in water treatment: 2014 RMSAWWA/RMWEA Joint Annual Conference, Albuquerque, New Mexico, USA September 7th 10th September 3rd, 2014

Research partnerships

Detecting Cancer Earlier is Goal of Rutgers-Developed Medical Imaging Technology: Rare earth nanocrystals and infrared light can reveal small cancerous tumors and cardiovascular lesions October 21st, 2014

Nitrogen Doped Graphene Characterized by Iranian, Russian, German Scientists October 21st, 2014

Crystallizing the DNA nanotechnology dream: Scientists have designed the first large DNA crystals with precisely prescribed depths and complex 3D features, which could create revolutionary nanodevices October 20th, 2014

IRLYNX and CEA-Leti to Streamline New CMOS-based Infrared Sensing Modules Dedicated to Human-activities Characterization October 15th, 2014

NanoNews-Digest
The latest news from around the world, FREE





  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE