Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Semiconductors grown on graphene: NTNU researchers commercialize semiconductors grown on graphene

Abstract:
NTNU researchers have patented and are commercializing GaAs nanowires grown on graphene, a hybrid material with competitive properties. Semiconductors grown on graphene are expected to become the basis for new types of device systems, and could fundamentally change the semiconductor industry. The technology underpinning their approach has recently been described in a publication in the American research journal Nano Letters.

Semiconductors grown on graphene: NTNU researchers commercialize semiconductors grown on graphene

Trondheim, Norway | Posted on September 10th, 2012

The new patented hybrid material offers excellent optoelectronic properties, says Professor Helge Weman, a professor at NTNU's Department of Electronics and Telecommunications, and CTO and co-founder of the company created to commercialize the research, CrayoNano AS. "We have managed to combine low cost, transparency and flexibility in our new electrode," he adds.

The patented method of growing semiconductor nanowires on atomically thin graphene uses MBE (Molecular Beam Epitaxy) to grow the nanowires.

"We do not see this as a new product," Weman says. "This is a template for a new production method for semiconductor devices. We expect solar cells and light emitting diodes to be first in line when future applications are planned."

Sunny outlook for nanowires
"Graphene is experiencing tremendous attention worldwide," Weman says. "Companies like IBM and Samsung are driving this development in the search for a replacement for silicon in electronics as well as for new applications, such as flexible touch screens for mobile phones. Well, they need not wait any more. Our invention fits perfectly with the production machinery they already have. We make it easy for them to upgrade consumer electronics to a level where design has no limits."

This invention is thus thought to be an enabler for a future platform for electronics and optoelectronics devices. One possible device with very large market potential is a nanowire solar cell. This type of solar cell has the potential to be efficient, cheap and flexible at the same time. The invention also makes it possible to imagine a future with self-powered nanomachines and advanced 3D integrated circuits built on graphene and semiconductor nanowires, enabling smaller and more efficient electronics.

Flexible future
Weman himself envisions flexible self-powered consumer electronics integrated into everything from clothes to notepads, and of course traditional cell phones, tablets and exercise accessories.

"Semiconductors grown on graphene could become the basis for new types of device systems, and could transform the semiconductor industry by introducing graphene as a preferred substrate for many applications," he says.

The research underpinning this development has been strongly supported by the Research Council of Norway since 2007. The project is embedded in the NTNU NanoLab, MBE Lab and Nano-Photonics Laboratory. The technology has been patented by NTNU Technology Transfer, of which CrayoNano is a spin-off company. The founders, Professor Helge Weman and Professor Bjørn-Ove Fimland, are both responsible for important research groups and labs at NTNU.

The article "Vertically Aligned GaAs Nanowires on Graphite and Few-Layer Graphene: Generic Model and Epitaxial Growth" was recently published in Nano Letters, which reports on fundamental research in all branches of nanoscience and nanotechnology.

For more information, see crayonano.com.

####

For more information, please click here

Contacts:
Helge Weman

47-918-97658

Copyright © Norwegian University of Science and Technology

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

View article:

Related News Press

News and information

Chemical cages: New technique advances synthetic biology February 10th, 2016

New thin film transistor may lead to flexible devices: Researchers engineer an electronics first, opening door to flexible electronics February 10th, 2016

Making sense of metallic glass February 9th, 2016

Electron's 1-D metallic surface state observed: A step for the prediction of electronic properties of extremely-fine metal nanowires in next-generation semiconductors February 9th, 2016

Graphene/ Graphite

Graphene decharging and molecular shielding February 8th, 2016

From allergens to anodes: Pollen derived battery electrodes February 8th, 2016

Graphene is strong, but is it tough? Berkeley Lab scientists find that polycrystalline graphene is not very resistant to fracture February 7th, 2016

Discovery of the specific properties of graphite-based carbon materials February 6th, 2016

Possible Futures

Chemical cages: New technique advances synthetic biology February 10th, 2016

New thin film transistor may lead to flexible devices: Researchers engineer an electronics first, opening door to flexible electronics February 10th, 2016

Electron's 1-D metallic surface state observed: A step for the prediction of electronic properties of extremely-fine metal nanowires in next-generation semiconductors February 9th, 2016

Scientists create laser-activated superconductor February 8th, 2016

Chip Technology

New thin film transistor may lead to flexible devices: Researchers engineer an electronics first, opening door to flexible electronics February 10th, 2016

SUNY Poly and GLOBALFOUNDRIES Announce New $500M R&D Program in Albany To Accelerate Next Generation Chip Technology: Arrival of Second Cutting Edge EUV Lithography Tool Launches New Patterning Center That Will Generate Over 100 New High Tech Jobs at SUNY Poly February 9th, 2016

Electron's 1-D metallic surface state observed: A step for the prediction of electronic properties of extremely-fine metal nanowires in next-generation semiconductors February 9th, 2016

Metal oxide sandwiches: New option to manipulate properties of interfaces February 8th, 2016

Nanoelectronics

Electron's 1-D metallic surface state observed: A step for the prediction of electronic properties of extremely-fine metal nanowires in next-generation semiconductors February 9th, 2016

The iron stepping stones to better wearable tech without semiconductors February 8th, 2016

Spin dynamics in an atomically thin semi-conductor February 1st, 2016

New type of nanowires, built with natural gas heating: UNIST research team developed a new simple nanowire manufacturing technique February 1st, 2016

Discoveries

Chemical cages: New technique advances synthetic biology February 10th, 2016

New thin film transistor may lead to flexible devices: Researchers engineer an electronics first, opening door to flexible electronics February 10th, 2016

Making sense of metallic glass February 9th, 2016

Electron's 1-D metallic surface state observed: A step for the prediction of electronic properties of extremely-fine metal nanowires in next-generation semiconductors February 9th, 2016

Announcements

Chemical cages: New technique advances synthetic biology February 10th, 2016

New thin film transistor may lead to flexible devices: Researchers engineer an electronics first, opening door to flexible electronics February 10th, 2016

Superconductivity: Footballs with no resistance - Indications of light-induced lossless electricity transmission in fullerenes contribute to the search for superconducting materials for practical applications February 9th, 2016

SUNY Poly and GLOBALFOUNDRIES Announce New $500M R&D Program in Albany To Accelerate Next Generation Chip Technology: Arrival of Second Cutting Edge EUV Lithography Tool Launches New Patterning Center That Will Generate Over 100 New High Tech Jobs at SUNY Poly February 9th, 2016

Patents/IP/Tech Transfer/Licensing

New thin film transistor may lead to flexible devices: Researchers engineer an electronics first, opening door to flexible electronics February 10th, 2016

Joint Efforts by Iranian, Malaysian Scientists Produce Antibacterial Coatings for Isolated Areas February 4th, 2016

Silicon-based metamaterials could bring photonic circuits February 1st, 2016

Therapeutic Solutions International Licenses Dexosome Clinical Stage Cancer Immunotherapy Product From Gustave Roussy European Cancer Centre: FDA Cleared Immuno-Oncology Technology to Resume Clinical Development for Solid Tumor Patients January 27th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic