Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Semiconductors grown on graphene: NTNU researchers commercialize semiconductors grown on graphene

Abstract:
NTNU researchers have patented and are commercializing GaAs nanowires grown on graphene, a hybrid material with competitive properties. Semiconductors grown on graphene are expected to become the basis for new types of device systems, and could fundamentally change the semiconductor industry. The technology underpinning their approach has recently been described in a publication in the American research journal Nano Letters.

Semiconductors grown on graphene: NTNU researchers commercialize semiconductors grown on graphene

Trondheim, Norway | Posted on September 10th, 2012

The new patented hybrid material offers excellent optoelectronic properties, says Professor Helge Weman, a professor at NTNU's Department of Electronics and Telecommunications, and CTO and co-founder of the company created to commercialize the research, CrayoNano AS. "We have managed to combine low cost, transparency and flexibility in our new electrode," he adds.

The patented method of growing semiconductor nanowires on atomically thin graphene uses MBE (Molecular Beam Epitaxy) to grow the nanowires.

"We do not see this as a new product," Weman says. "This is a template for a new production method for semiconductor devices. We expect solar cells and light emitting diodes to be first in line when future applications are planned."

Sunny outlook for nanowires
"Graphene is experiencing tremendous attention worldwide," Weman says. "Companies like IBM and Samsung are driving this development in the search for a replacement for silicon in electronics as well as for new applications, such as flexible touch screens for mobile phones. Well, they need not wait any more. Our invention fits perfectly with the production machinery they already have. We make it easy for them to upgrade consumer electronics to a level where design has no limits."

This invention is thus thought to be an enabler for a future platform for electronics and optoelectronics devices. One possible device with very large market potential is a nanowire solar cell. This type of solar cell has the potential to be efficient, cheap and flexible at the same time. The invention also makes it possible to imagine a future with self-powered nanomachines and advanced 3D integrated circuits built on graphene and semiconductor nanowires, enabling smaller and more efficient electronics.

Flexible future
Weman himself envisions flexible self-powered consumer electronics integrated into everything from clothes to notepads, and of course traditional cell phones, tablets and exercise accessories.

"Semiconductors grown on graphene could become the basis for new types of device systems, and could transform the semiconductor industry by introducing graphene as a preferred substrate for many applications," he says.

The research underpinning this development has been strongly supported by the Research Council of Norway since 2007. The project is embedded in the NTNU NanoLab, MBE Lab and Nano-Photonics Laboratory. The technology has been patented by NTNU Technology Transfer, of which CrayoNano is a spin-off company. The founders, Professor Helge Weman and Professor Bjørn-Ove Fimland, are both responsible for important research groups and labs at NTNU.

The article "Vertically Aligned GaAs Nanowires on Graphite and Few-Layer Graphene: Generic Model and Epitaxial Growth" was recently published in Nano Letters, which reports on fundamental research in all branches of nanoscience and nanotechnology.

For more information, see crayonano.com.

####

For more information, please click here

Contacts:
Helge Weman

47-918-97658

Copyright © Norwegian University of Science and Technology

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

View article:

Related News Press

News and information

Tuning into quantum: Scientists unlock signal frequency control of precision atom qubits July 16th, 2018

Nano-kirigami: 'Paper-cut' provides model for 3D intelligent nanofabrication July 13th, 2018

UMBC researchers develop nanoparticles to reduce internal bleeding caused by blast trauma July 13th, 2018

Oxford Instruments’ 22 Tesla superconducting magnet system commissioned at the UAM, making it the most intense magnetic field available outside a large international facility July 12th, 2018

Graphene/ Graphite

NIST Researchers Simulate Simple Logic for Nanofluidic Computing June 30th, 2018

Making quantum puddles: Physicists discover how to create the thinnest liquid films ever June 13th, 2018

Graphene carpets: So neurons communicate better: Research by SISSA reveals that graphene can strengthen neuronal activity, confirming the unique properties of this nanomaterial. The study has been published on Nature Nanotechnology June 13th, 2018

Unzipping graphene nanotubes into nanoribbons: New study shows elegant mathematical solution to understand how the flow of electrons changes when carbon nanotubes turn into zigzag nanoribbons June 6th, 2018

Possible Futures

Tuning into quantum: Scientists unlock signal frequency control of precision atom qubits July 16th, 2018

Nano-kirigami: 'Paper-cut' provides model for 3D intelligent nanofabrication July 13th, 2018

UMBC researchers develop nanoparticles to reduce internal bleeding caused by blast trauma July 13th, 2018

Barium ruthenate: A high-yield, easy-to-handle perovskite catalyst for the oxidation of sulfides July 13th, 2018

Chip Technology

Tuning into quantum: Scientists unlock signal frequency control of precision atom qubits July 16th, 2018

Nanometrics to Announce Second Quarter Financial Results on July 31, 2018 July 12th, 2018

Leti and Soitec Launch a New Substrate Innovation Center to Develop Engineered Substrate Solutions: Industry-inclusive hub promotes early collaboration and learning from substrate to system level July 11th, 2018

GLOBALFOUNDRIES Surpasses $2 Billion in Design Win Revenue on 22FDX® Technology : With 50 client designs and growing, 22FDX proves its value as a cost-effective solution for power-sensitive applications July 9th, 2018

Nanoelectronics

GLOBALFOUNDRIES Surpasses $2 Billion in Design Win Revenue on 22FDX® Technology : With 50 client designs and growing, 22FDX proves its value as a cost-effective solution for power-sensitive applications July 9th, 2018

High-power electronics keep their cool with new heat-conducting crystals July 6th, 2018

Leti Presenting Strategic Vision and Hosting a Workshop at SEMICON West: “From Electrons to Photons” Leti Workshop and CEO Media Briefing Set for Tuesday, July 10 in W Hotel, San Francisco June 12th, 2018

Quantum Interference May Be Key to Smaller Insulators: Breakthrough could jumpstart further miniaturization of transistors June 6th, 2018

Discoveries

Tuning into quantum: Scientists unlock signal frequency control of precision atom qubits July 16th, 2018

Nano-kirigami: 'Paper-cut' provides model for 3D intelligent nanofabrication July 13th, 2018

UMBC researchers develop nanoparticles to reduce internal bleeding caused by blast trauma July 13th, 2018

Barium ruthenate: A high-yield, easy-to-handle perovskite catalyst for the oxidation of sulfides July 13th, 2018

Announcements

Tuning into quantum: Scientists unlock signal frequency control of precision atom qubits July 16th, 2018

Nano-kirigami: 'Paper-cut' provides model for 3D intelligent nanofabrication July 13th, 2018

UMBC researchers develop nanoparticles to reduce internal bleeding caused by blast trauma July 13th, 2018

Barium ruthenate: A high-yield, easy-to-handle perovskite catalyst for the oxidation of sulfides July 13th, 2018

Patents/IP/Tech Transfer/Licensing

Changing the grocery game: Manufacturing process provides low-cost, sustainable option for food packaging June 26th, 2018

Tunable diamond string may hold key to quantum memory: A process similar to guitar tuning improves storage time of quantum memory May 24th, 2018

Self-assembling 3D battery would charge in seconds May 22nd, 2018

Leti Silicon Photonics Design Kit Available in Synopsis OptoDesigner Suite: Kit Contains Design Rules and Building Blocks for Multi-Project Wafers And Custom Runs on Leti’s Si310 Platform April 5th, 2018

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project