Nanotechnology Now





Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > $18.5 million NSF grant to develop self-monitoring health devices

 Credit: ASSIST	A schematic for an unobtrusive, wearable electronic health monitoring system. Penn State is part of a collaborative research effort to create self-powered devices to help people monitor their health.
Credit: ASSIST

A schematic for an unobtrusive, wearable electronic health monitoring system. Penn State is part of a collaborative research effort to create self-powered devices to help people monitor their health.

Abstract:
Penn State, North Carolina State University, the University of Virginia and Florida International University will collaborate on a national nanotechnology research effort to create self-powered devices to help people monitor their health and understand how the surrounding environment affects it, the National Science Foundation (NSF) announced Sept. 6.

$18.5 million NSF grant to develop self-monitoring health devices

University Park, PA | Posted on September 6th, 2012

The NSF Nanosystems Engineering Research Center for Advanced Self-Powered Systems of Integrated Sensors and Technologies (ASSIST), to be headquartered on NC State's Centennial Campus, also includes five affiliated universities and about 30 industry partners in its global research consortium. ASSIST will be funded by an initial five-year $18.5 million grant from the NSF.

ASSIST researchers will use nanomaterials and nanostructures — a nanowire is thousands of times thinner than a human hair — to develop self-powered health monitoring sensors and devices that operate on small amounts of energy. ASSIST researchers will make devices from thermoelectric and piezoelectric materials that use body heat and motion, respectively, as power sources.

"The ASSIST program offers an opportunity to utilize core Penn State strengths in materials, nanofabrication, low power circuits and biobehavioral health to advance human health. This is an extremely exciting opportunity for the researchers involved," said Susan Trolier-McKinstry, Penn State professor of materials science and engineering.

"Currently there are many devices out there that monitor health in different ways," said Veena Misra, the center's director and professor of electrical and computer engineering at NC State. "What's unique about our technologies is the fact that they are powered by the human body, so they don't require battery charging."

These devices could transform health care by improving the way doctors, patients and researchers gather and interpret important health data. Armed with uninterrupted streams of heart rate readings, respiration rates and other health indicators, sick people could better manage chronic diseases, the elderly could be monitored from a distance and healthy people could make better decisions to keep themselves fit.

For example, personalized exposure data for environmental pollutants such as ozone and carbon monoxide could help a child suffering from asthma avoid an environmental trigger for an attack. Miniaturized devices the size of a pen or wristwatch will make compliance simpler and therefore more likely, resulting in better health outcomes and reduced health costs to society.

The center's partner institutions will play important research roles. At Penn State, researchers will create new piezoelectric materials and devices; energy-efficient transistors; extremely low-power sensors; and help understand the correlations between environmental exposure and human health. The Penn State team includes faculty from the Colleges of Engineering, Earth and Mineral Sciences, Education, and Health and Human Development, with Tom Jackson, Penn State professor of electrical engineering, serving as the center's research director.

The team from the University of Virginia will develop ways to make the systems work on very small amounts of power, while the group from Florida International University will create sensors that gather biochemical signals from the body, such as stress levels.

The results of that work, coupled with low-power radios developed by the University of Michigan, will be used to process and transmit health data gathered by the sensors to computers and consumer devices, such as cell phones, so patients, doctors and researchers can easily digest it. The University of North Carolina at Chapel Hill will provide ASSIST with medical guidance and arrange testing of the center's technology.

"We have assembled a comprehensive team that works together closely under a systems-driven approach to tackle this challenging set of global health problems," Misra said.

ASSIST will draw on the expertise of industry partners to help guide the center's work to the marketplace. These partners include companies and agencies involved in nanomaterials and nanodevices, integrated chip manufacturing, software development, bioengineering and health care. ASSIST also has foreign partnerships with the University of Adelaide, the Korea Advanced Institute of Science and Technology and the Tokyo Institute of Technology.

The five-year NSF grant for ASSIST is renewable for an additional five years and follows a two-year selection process by the federal agency. The grant is among a new group of Engineering Research Center awards that invest in nanosystems.

Participants from the College of Engineering are Tom Jackson (EE), Chris Rahn (ME), Suman Datta (EE), Doug Werner (EE), and Renata Engel (ESM). Participants from the College of Earth and Mineral Sciences are Clive Randall (MatSE) and Susan Trolier-McKinstry (MatSE). Also participating are Annmarie Ward from the College of Education, Shedra Amy Snipes from the College of Health and Human Development and Suzanne Adair from the Graduate School.

####

For more information, please click here

Copyright © Penn State

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Clues to inner atomic life from subtle light-emission shifts: Hyperfine structure of light absorption by short-lived cadmium atom isotopes reveals characteristics of the nucleus that matter for high precision detection methods July 3rd, 2015

Pioneering Southampton scientist awarded prestigious physics medal July 3rd, 2015

Groundbreaking research to help control liquids at micro and nano scales July 3rd, 2015

Discovery of nanotubes offers new clues about cell-to-cell communication July 2nd, 2015

Govt.-Legislation/Regulation/Funding/Policy

New technology using silver may hold key to electronics advances July 2nd, 2015

NIST Group Maps Distribution of Carbon Nanotubes in Composite Materials July 2nd, 2015

NIST ‘How-To’ Website Documents Procedures for Nano-EHS Research and Testing July 1st, 2015

Ultra-stable JILA microscopy technique tracks tiny objects for hours July 1st, 2015

Nanomedicine

Groundbreaking research to help control liquids at micro and nano scales July 3rd, 2015

Iranian Scientists Find Simple, Economic Method to Synthesize Antibacterial Nanoparticles July 2nd, 2015

Leti Announces Launch of First European Nanomedicine Characterisation Laboratory: Project Combines Expertise of 9 Partners in 8 Countries to Foster Nanomedicine Innovation and Facilitate Regulatory Approval July 1st, 2015

Chitosan coated, chemotherapy packed nanoparticles may target cancer stem cells June 30th, 2015

Announcements

Clues to inner atomic life from subtle light-emission shifts: Hyperfine structure of light absorption by short-lived cadmium atom isotopes reveals characteristics of the nucleus that matter for high precision detection methods July 3rd, 2015

Pioneering Southampton scientist awarded prestigious physics medal July 3rd, 2015

Groundbreaking research to help control liquids at micro and nano scales July 3rd, 2015

NIST Group Maps Distribution of Carbon Nanotubes in Composite Materials July 2nd, 2015

Alliances/Trade associations/Partnerships/Distributorships

Harris & Harris Group Portfolio Company, AgBiome, Announces Partnership to Accelerate the Discovery of Next Generation Insect-Resistant Crops July 1st, 2015

Graphene breakthrough as Bosch creates magnetic sensor 100 times more sensitive than silicon equivalent June 28th, 2015

Dyesol Joins Solliance as an Industrial Partner June 17th, 2015

The European project SVARNISH, a step forward in the food packaging sector June 11th, 2015

Research partnerships

Groundbreaking research to help control liquids at micro and nano scales July 3rd, 2015

Producing spin-entangled electrons July 2nd, 2015

Harris & Harris Group Portfolio Company, AgBiome, Announces Partnership to Accelerate the Discovery of Next Generation Insect-Resistant Crops July 1st, 2015

Leti Announces Launch of First European Nanomedicine Characterisation Laboratory: Project Combines Expertise of 9 Partners in 8 Countries to Foster Nanomedicine Innovation and Facilitate Regulatory Approval July 1st, 2015

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project