Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > New study shows promise in using RNA nanotechnology to treat cancers and viral infections

The University of Kentucky's Peixuan Guo is considered one of the top three nanobiotechnology experts in the world.

Credit: UK HealthCare
The University of Kentucky's Peixuan Guo is considered one of the top three nanobiotechnology experts in the world.

Credit: UK HealthCare

Abstract:
A new study by University of Kentucky researchers shows promise for developing ultrastable RNA nanoparticles that may help treat cancer and viral infections by regulating cell function and binding to cancers without harming surrounding tissue.

New study shows promise in using RNA nanotechnology to treat cancers and viral infections

Lexington, KY | Posted on September 5th, 2012

The study, published in Nano Today, was carried out in the laboratory of Peixuan Guo, the William S. Farish Endowed Chair in Nanobiotechnology at the UK Markey Cancer Center, in collaboration with Dr. Mark Evers, director of the UK Markey Cancer Center.

The study uses RNA (ribonucleic acid) as a building block for the bottom-up fabrication of nanostructures. Using the RNA nanotechnology pioneered by Guo, the researchers constructed ultrastable X-shaped RNA nanoparticles using re-engineered RNA fragments to carry up to four therapeutic and diagnostic modules. Their RNA nanoparticles can include small interfering RNA for silencing genes, micro-RNA for regulating gene expression, aptamer for targeting cancer cells, or a ribozyme that can catalyze chemical reactions.

The study demonstrated that regulation of cellular functions progressively increased with the increasing number of functional modules in the nanoparticle.

"RNA nanotechnology is an emerging field, but the instability and degradation of RNA nanoparticles have made many scientists flinch away from the research in RNA nanotechnology," Guo said. "We have addressed these issues, and now it is possible to produce RNA nanoparticles that are highly stable both chemically and thermodynamically in the test tube or in the body with great potential as therapeutic reagents."

The RNA nanoparticles displayed several favorable attributes: polyvalent nature, which allows simultaneous delivery of multiple functional molecules for achieving synergistic effects; modular design, which enables controlled self-assembly with defined structure; thermodynamically stable, which keeps the RNA nanoparticles intact in animal and human circulation systems, where they exist at very low concentrations; and chemically stable, which makes the nanoparticles resistant to RNase (an enzyme, which cleaves RNA) digestion in the blood serum.

"A major problem with cancer treatments is the ability to more directly and specifically deliver anti-cancer drugs to cancer metastases," Evers said. "Using the nanotechnology approach that Peixuan Guo and his group have devised may allow us to more effectively treat cancer metastasis with fewer side effects compared to current chemotherapy."

In addition to Evers and Markey team member Dr. Piotr Rychahou, Guo's research team at UK also includes Farzin Haque, first author on the paper; Dan Shu; Yi Shu; and Luda Shlyakhtenko.

####

For more information, please click here

Contacts:
Allison Perry

859-323-2399

Copyright © University of Kentucky

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Zap! Graphene is bad news for bacteria: Rice, Ben-Gurion universities show laser-induced graphene kills bacteria, resists biofouling May 22nd, 2017

Leti Will Demo World’s-first WVGA 10-µm Pitch GaN Microdisplays for Augmented Reality Video at Display Week in Los Angles: Invited Paper also Will Present Leti’s Success with New Augmented Reality Technology That Reduces Pixel Pitch to Less than 5 Microns May 22nd, 2017

Sensors detect disease markers in breath May 19th, 2017

Graphene-nanotube hybrid boosts lithium metal batteries: Rice University prototypes store 3 times the energy of lithium-ion batteries May 19th, 2017

Nanomedicine

Zap! Graphene is bad news for bacteria: Rice, Ben-Gurion universities show laser-induced graphene kills bacteria, resists biofouling May 22nd, 2017

Sensors detect disease markers in breath May 19th, 2017

Oddball enzyme provides easy path to synthetic biomaterials May 17th, 2017

The brighter side of twisted polymers: Conjugated polymers designed with a twist produce tiny, brightly fluorescent particles with broad applications May 16th, 2017

Discoveries

Zap! Graphene is bad news for bacteria: Rice, Ben-Gurion universities show laser-induced graphene kills bacteria, resists biofouling May 22nd, 2017

Sensors detect disease markers in breath May 19th, 2017

Graphene-nanotube hybrid boosts lithium metal batteries: Rice University prototypes store 3 times the energy of lithium-ion batteries May 19th, 2017

Plasmon-powered upconversion nanocrystals for enhanced bioimaging and polarized emission: Plasmonic gold nanorods brighten lanthanide-doped upconversion superdots for improved multiphoton bioimaging contrast and enable polarization-selective nonlinear emissions for novel nanoscal May 19th, 2017

Announcements

Zap! Graphene is bad news for bacteria: Rice, Ben-Gurion universities show laser-induced graphene kills bacteria, resists biofouling May 22nd, 2017

Leti Will Demo World’s-first WVGA 10-µm Pitch GaN Microdisplays for Augmented Reality Video at Display Week in Los Angles: Invited Paper also Will Present Leti’s Success with New Augmented Reality Technology That Reduces Pixel Pitch to Less than 5 Microns May 22nd, 2017

Sensors detect disease markers in breath May 19th, 2017

Graphene-nanotube hybrid boosts lithium metal batteries: Rice University prototypes store 3 times the energy of lithium-ion batteries May 19th, 2017

Nanobiotechnology

Zap! Graphene is bad news for bacteria: Rice, Ben-Gurion universities show laser-induced graphene kills bacteria, resists biofouling May 22nd, 2017

Sensors detect disease markers in breath May 19th, 2017

Oddball enzyme provides easy path to synthetic biomaterials May 17th, 2017

The brighter side of twisted polymers: Conjugated polymers designed with a twist produce tiny, brightly fluorescent particles with broad applications May 16th, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project