Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > Interfaces provide new control over oxides' electronic properties

Provided/Kyle Shen
An artist's rendering of a transition metal oxide superlattice, with an actual transmission electron microscopy image superimposed on the left panel. The red is manganese, yellow is lanthanum and blue is strontium. The top is a Fermi surface map which illustrates how electrons move in the material.
Provided/Kyle Shen

An artist's rendering of a transition metal oxide superlattice, with an actual transmission electron microscopy image superimposed on the left panel. The red is manganese, yellow is lanthanum and blue is strontium. The top is a Fermi surface map which illustrates how electrons move in the material.

Abstract:
Materials called transition metal oxides have physicists intrigued by their potentially useful properties -- from magnetoresistance (the reason a hard drive can write memory) to superconductivity.

Interfaces provide new control over oxides' electronic properties

Ithaca, NY | Posted on September 4th, 2012

By combining two sophisticated experimental tools -- oxide molecular beam expitaxy and angle-resolved photoemission spectroscopy -- researchers have gained the first insights into quantum interactions in transition metal oxide superlattices, which are artificial stacked layers of alternating materials, each just a few atoms thick.

Even slight modifications to the stacking sequence can switch the entire superlattice from a conductive to insulating state, due to the enhancement of quantum interactions between the electrons. The findings were published online Aug. 19 in the journal Nature Materials.

"We are interested in superlattices of transition metal oxides because they can exhibit all sorts of exotic electronic and magnetic properties that do not exist in the bulk of these materials," said Kyle Shen, assistant professor of physics and paper's senior author. "They might be useful someday, but from a scientific standpoint, they are just really fascinating because the electrons can conspire to give rise to very unexpected emergent phenomena."

For some transition metal oxide superlattices, it has been shown that adding just one extra layer of atoms to the stacked layers switches them from conductor to insulator. Shen and his colleagues wanted to understand why this occurs.

To do this, the team tapped the expertise of co-author Darrell Schlom, the Herbert Fisk Johnson Professor of Industrial Chemistry in the Department of Materials Science and Engineering, who with postdoctoral scholar Carolina Adamo, created specifically designed stacks of two oxides, lanthanum manganese oxide and strontium manganese oxide, each just a few atomic layers thick and with atomic precision. To make the superlattices, they used molecular beam epitaxy, which is like spray-painting with the elements of the periodic table.

The team then utilized a unique piece of instrumentation designed and built by Shen and Schlom's groups at Cornell. It allowed them to study the superlattices after synthesis by angle-resolved photoemission spectroscopy without exposing the surfaces to air, which would contaminate the sample and obscure the sensitive experiments. Eric Monkman, a graduate student in Shen's group, and colleagues then measured and analyzed how the electrons move through different kinds of superlattices.

It turned out that the distances between the interfaces of the lanthanum and strontium oxides were the key: Pushing the interfaces farther apart made the electrons more confined to each individual interface, resulting in an enhancement of the quantum interactions, which drive the entire superlattice into an insulating state.

By pushing the interfaces closer together, the electrons could start to move between interfaces, resulting in a metallic state. The researchers were able to reach these conclusions through the use of photoemission spectroscopy, which maps the motion of electrons in solids at the atomic scale.

Advanced transmission electron microscopy imaging led by David A. Muller, Cornell professor of applied and engineering physics and co-director of the Kavli Institute at Cornell for Nanoscale Science, and graduate student Julia Mundy, confirmed that the interfaces between the lanthanum and strontium were indeed sharp, which helped confirm the quantum interactions.

The paper's co-first authors are Monkman and Adamo. Shen, Schlom and Muller are members of the Kavli Institute at Cornell for Nanoscale Science. The research was supported by the National Science Foundation through the Cornell Center for Materials Research and a Career award.

####

For more information, please click here

Contacts:
Media Contact:
Syl Kacapyr
(607) 255-7701


Cornell Chronicle:
Anne Ju
(607) 255-9735

Copyright © Cornell University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

First Observation of Electronic Structure in Ag-Rh Alloy Nanoparticles Having Hydrogen Absorbing: Storage Property –Attempting to solve the mystery of why Ag-Rh alloy nanoparticles have a similar property to Pd– October 30th, 2014

Iranians Present Model to Predict Photocatalytic Process in Removal of Pollutants October 30th, 2014

Production of Biocompatible Polymers in Iran October 30th, 2014

Amorphous Coordination Polymer Particles as alternative to classical nanoplatforms for nanomedicine October 30th, 2014

Physics

Sussex physicists find simple solution for quantum technology challenge October 28th, 2014

New evidence for an exotic, predicted superconducting state October 27th, 2014

Solid nanoparticles can deform like a liquid: Unexpected finding shows tiny particles keep their internal crystal structure while flexing like droplets October 12th, 2014

Superconductivity

New evidence for an exotic, predicted superconducting state October 27th, 2014

Superconducting circuits, simplified: New circuit design could unlock the power of experimental superconducting computer chips October 18th, 2014

Chip Technology

Sussex physicists find simple solution for quantum technology challenge October 28th, 2014

Watching the hidden life of materials: Ultrafast electron diffraction experiments open a new window on the microscopic world October 27th, 2014

Breakthrough in molecular electronics paves the way for DNA-based computer circuits in the future: DNA-based programmable circuits could be more sophisticated, cheaper and simpler to make October 27th, 2014

QuantumWise guides the semiconductor industry towards the atomic scale October 24th, 2014

Memory Technology

Strengthening thin-film bonds with ultrafast data collection October 23rd, 2014

Superconducting circuits, simplified: New circuit design could unlock the power of experimental superconducting computer chips October 18th, 2014

Future computers could be built from magnetic 'tornadoes' October 14th, 2014

Research mimics brain cells to boost memory power September 30th, 2014

Discoveries

First Observation of Electronic Structure in Ag-Rh Alloy Nanoparticles Having Hydrogen Absorbing: Storage Property –Attempting to solve the mystery of why Ag-Rh alloy nanoparticles have a similar property to Pd– October 30th, 2014

Iranians Present Model to Predict Photocatalytic Process in Removal of Pollutants October 30th, 2014

Production of Biocompatible Polymers in Iran October 30th, 2014

Amorphous Coordination Polymer Particles as alternative to classical nanoplatforms for nanomedicine October 30th, 2014

Announcements

First Observation of Electronic Structure in Ag-Rh Alloy Nanoparticles Having Hydrogen Absorbing: Storage Property –Attempting to solve the mystery of why Ag-Rh alloy nanoparticles have a similar property to Pd– October 30th, 2014

Iranians Present Model to Predict Photocatalytic Process in Removal of Pollutants October 30th, 2014

Production of Biocompatible Polymers in Iran October 30th, 2014

Amorphous Coordination Polymer Particles as alternative to classical nanoplatforms for nanomedicine October 30th, 2014

Tools

A new cheap and efficient method to improve SERS, an ultra-sensitive chemical detection technique October 28th, 2014

New Compact SIMS at 61st AVS | Visit us on Booth 311 October 28th, 2014

New nanodevice to improve cancer treatment monitoring October 27th, 2014

Haydale Secures Exclusive Development and Supply Agreement with Tantec A/S: New reactors to be built and commissioned by Tantec A/S represent another step forward towards the commercialisation of graphene October 24th, 2014

Quantum nanoscience

NIST quantum probe enhances electric field measurements October 8th, 2014

Quantum environmentalism: Putting a qubit's surroundings to good use October 2nd, 2014

Rice launches Center for Quantum Materials: RCQM will immerse global visitors in cross-disciplinary research September 30th, 2014

Big Results Require Big Ambitions: Three young UCSB faculty receive CAREER awards from the National Science Foundation September 18th, 2014

NanoNews-Digest
The latest news from around the world, FREE





  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE