Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Interfaces provide new control over oxides' electronic properties

Provided/Kyle Shen
An artist's rendering of a transition metal oxide superlattice, with an actual transmission electron microscopy image superimposed on the left panel. The red is manganese, yellow is lanthanum and blue is strontium. The top is a Fermi surface map which illustrates how electrons move in the material.
Provided/Kyle Shen

An artist's rendering of a transition metal oxide superlattice, with an actual transmission electron microscopy image superimposed on the left panel. The red is manganese, yellow is lanthanum and blue is strontium. The top is a Fermi surface map which illustrates how electrons move in the material.

Abstract:
Materials called transition metal oxides have physicists intrigued by their potentially useful properties -- from magnetoresistance (the reason a hard drive can write memory) to superconductivity.

Interfaces provide new control over oxides' electronic properties

Ithaca, NY | Posted on September 4th, 2012

By combining two sophisticated experimental tools -- oxide molecular beam expitaxy and angle-resolved photoemission spectroscopy -- researchers have gained the first insights into quantum interactions in transition metal oxide superlattices, which are artificial stacked layers of alternating materials, each just a few atoms thick.

Even slight modifications to the stacking sequence can switch the entire superlattice from a conductive to insulating state, due to the enhancement of quantum interactions between the electrons. The findings were published online Aug. 19 in the journal Nature Materials.

"We are interested in superlattices of transition metal oxides because they can exhibit all sorts of exotic electronic and magnetic properties that do not exist in the bulk of these materials," said Kyle Shen, assistant professor of physics and paper's senior author. "They might be useful someday, but from a scientific standpoint, they are just really fascinating because the electrons can conspire to give rise to very unexpected emergent phenomena."

For some transition metal oxide superlattices, it has been shown that adding just one extra layer of atoms to the stacked layers switches them from conductor to insulator. Shen and his colleagues wanted to understand why this occurs.

To do this, the team tapped the expertise of co-author Darrell Schlom, the Herbert Fisk Johnson Professor of Industrial Chemistry in the Department of Materials Science and Engineering, who with postdoctoral scholar Carolina Adamo, created specifically designed stacks of two oxides, lanthanum manganese oxide and strontium manganese oxide, each just a few atomic layers thick and with atomic precision. To make the superlattices, they used molecular beam epitaxy, which is like spray-painting with the elements of the periodic table.

The team then utilized a unique piece of instrumentation designed and built by Shen and Schlom's groups at Cornell. It allowed them to study the superlattices after synthesis by angle-resolved photoemission spectroscopy without exposing the surfaces to air, which would contaminate the sample and obscure the sensitive experiments. Eric Monkman, a graduate student in Shen's group, and colleagues then measured and analyzed how the electrons move through different kinds of superlattices.

It turned out that the distances between the interfaces of the lanthanum and strontium oxides were the key: Pushing the interfaces farther apart made the electrons more confined to each individual interface, resulting in an enhancement of the quantum interactions, which drive the entire superlattice into an insulating state.

By pushing the interfaces closer together, the electrons could start to move between interfaces, resulting in a metallic state. The researchers were able to reach these conclusions through the use of photoemission spectroscopy, which maps the motion of electrons in solids at the atomic scale.

Advanced transmission electron microscopy imaging led by David A. Muller, Cornell professor of applied and engineering physics and co-director of the Kavli Institute at Cornell for Nanoscale Science, and graduate student Julia Mundy, confirmed that the interfaces between the lanthanum and strontium were indeed sharp, which helped confirm the quantum interactions.

The paper's co-first authors are Monkman and Adamo. Shen, Schlom and Muller are members of the Kavli Institute at Cornell for Nanoscale Science. The research was supported by the National Science Foundation through the Cornell Center for Materials Research and a Career award.

####

For more information, please click here

Contacts:
Media Contact:
Syl Kacapyr
(607) 255-7701


Cornell Chronicle:
Anne Ju
(607) 255-9735

Copyright © Cornell University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Chemical cages: New technique advances synthetic biology February 10th, 2016

New thin film transistor may lead to flexible devices: Researchers engineer an electronics first, opening door to flexible electronics February 10th, 2016

Making sense of metallic glass February 9th, 2016

Electron's 1-D metallic surface state observed: A step for the prediction of electronic properties of extremely-fine metal nanowires in next-generation semiconductors February 9th, 2016

Nanoparticle therapy that uses LDL and fish oil kills liver cancer cells February 9th, 2016

Superconductivity

Superconductivity: Footballs with no resistance - Indications of light-induced lossless electricity transmission in fullerenes contribute to the search for superconducting materials for practical applications February 9th, 2016

Scientists create laser-activated superconductor February 8th, 2016

Physics

Electron's 1-D metallic surface state observed: A step for the prediction of electronic properties of extremely-fine metal nanowires in next-generation semiconductors February 9th, 2016

Chip Technology

New thin film transistor may lead to flexible devices: Researchers engineer an electronics first, opening door to flexible electronics February 10th, 2016

SUNY Poly and GLOBALFOUNDRIES Announce New $500M R&D Program in Albany To Accelerate Next Generation Chip Technology: Arrival of Second Cutting Edge EUV Lithography Tool Launches New Patterning Center That Will Generate Over 100 New High Tech Jobs at SUNY Poly February 9th, 2016

Electron's 1-D metallic surface state observed: A step for the prediction of electronic properties of extremely-fine metal nanowires in next-generation semiconductors February 9th, 2016

Metal oxide sandwiches: New option to manipulate properties of interfaces February 8th, 2016

Memory Technology

A step towards keeping up with Moore's Law: POSTECH researchers develop a novel and efficient fabrication technology for cross-shaped memristor January 30th, 2016

Scientists build a neural network using plastic memristors: A group of Russian and Italian scientists have created a neural network based on polymeric memristors -- devices that can potentially be used to build fundamentally new computers January 28th, 2016

LC.300 Series Nanopositioning Controller from nPoint January 28th, 2016

First all-antiferromagnetic memory device could get digital data storage in a spin January 16th, 2016

Discoveries

Chemical cages: New technique advances synthetic biology February 10th, 2016

New thin film transistor may lead to flexible devices: Researchers engineer an electronics first, opening door to flexible electronics February 10th, 2016

Making sense of metallic glass February 9th, 2016

Electron's 1-D metallic surface state observed: A step for the prediction of electronic properties of extremely-fine metal nanowires in next-generation semiconductors February 9th, 2016

Announcements

Chemical cages: New technique advances synthetic biology February 10th, 2016

New thin film transistor may lead to flexible devices: Researchers engineer an electronics first, opening door to flexible electronics February 10th, 2016

Superconductivity: Footballs with no resistance - Indications of light-induced lossless electricity transmission in fullerenes contribute to the search for superconducting materials for practical applications February 9th, 2016

SUNY Poly and GLOBALFOUNDRIES Announce New $500M R&D Program in Albany To Accelerate Next Generation Chip Technology: Arrival of Second Cutting Edge EUV Lithography Tool Launches New Patterning Center That Will Generate Over 100 New High Tech Jobs at SUNY Poly February 9th, 2016

Tools

Making sense of metallic glass February 9th, 2016

Chiral magnetic effect generates quantum current: Separating left- and right-handed particles in a semi-metallic material produces anomalously high conductivity February 8th, 2016

Metal oxide sandwiches: New option to manipulate properties of interfaces February 8th, 2016

Researchers discover new phase of boron nitride and a new way to create pure c-BN February 5th, 2016

Quantum nanoscience

Nanoscale cavity strongly links quantum particles: Single photons can quickly modify individual electrons embedded in a semiconductor chip and vice versa February 8th, 2016

The iron stepping stones to better wearable tech without semiconductors February 8th, 2016

Spin dynamics in an atomically thin semi-conductor February 1st, 2016

New record in nanoelectronics at ultralow temperatures January 28th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic