Nanotechnology Now

Our NanoNews Digest Sponsors


Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Ultra High-Frequency Ultrasound and Photoacoustics Enable Breakthrough Molecular Imaging in Translational Research

Abstract:
Designed specifically for preclinical research, ultra high-frequency ultrasound systems enable in vivo viewing and assessment of miniscule targets. When combined with high-resolution molecular imaging, these systems allow researchers to view small-animal anatomical structures and micro-environmental functions in real time, such as beating hearts and growing malignancies.

Ultra High-Frequency Ultrasound and Photoacoustics Enable Breakthrough Molecular Imaging in Translational Research

Toronto, Canada | Posted on September 3rd, 2012

This breakthrough ultrasound technology allows the world's most prestigious pharmaceutical and biotechnology companies, hospitals, and universities to enhance their research capabilities in areas such as translational research, cardiovascular function and disease, cancer, neurobiology, developmental biology, drug development, phenotypic studies, and genetic research, among others.

One company that has established itself as a leader in preclinical, in vivo imaging is VisualSonics, Inc., a wholly owned subsidiary of clinical ultrasound manufacturer SonoSite, Inc., a Fujifilm company. VisualSonics' Vevo® products line includes high-frequency micro-imaging systems (Vevo® 2100 and 770) and a premier photoacoustic imaging platform, the Vevo LAZR*. The Vevo LAZR* has expanded in vivo nanoparticle imaging and microenvironmental research capabilities by simultaneously collecting and displaying high-resolution micro-ultrasound and photoacoustic signals. These systems have found strong utility in advanced preclinical research resulting in over 700 peer-reviewed publications across the globe.

One area where these technologies show particular promise is translational research. Because translational research connects preclinical research at the bench with clinical outcomes at the patients' bedside, the development of research tools that promise and show direct relevance to imaging and quantification of diseases in humans is critical for today's basic science researchers. As the primary and secondary causes of death globally, cardiovascular disease and cancer represent important basic research and clinical research areas, which can be studied in animal models non-invasively in real-time through the use of high-frequency ultrasound. And, using the company's photoacoustic technology for molecular imaging, cancer can be studied in its earliest stages of progression in animal test subjects.


To introduce in vivo high-frequency ultrasound and photoacoustic imaging to researchers and other potential users, VisualSonics has been offering lab visits with top preclinical researchers using these advanced technologies, as well as free webinar presentations by some of the world's most respected authorities on high-resolution micro-imaging.

To register for upcoming webinars, demonstrations, and laboratory visits—or to learn more about ultra high-frequency ultrasound and molecular imaging systems—go to: VisualSonics.com

####

For more information, please click here

Contacts:
3080 Yonge Street Suite 6100, Box 66
Toronto, Ontario, Canada
M4N 3N1
T. +1.416.484.5000
F. +1.416.484.5001
North American Toll Free 1.866.416.4636

SA Perillo

Copyright © VisualSonics Inc.

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Nanoparticles present sustainable way to grow food crops May 1st, 2016

Searching for a nanotech self-organizing principle May 1st, 2016

Clay nanotube-biopolymer composite scaffolds for tissue engineering May 1st, 2016

Cooling graphene-based film close to pilot-scale production April 30th, 2016

Nanomedicine

Clay nanotube-biopolymer composite scaffolds for tissue engineering May 1st, 2016

Nanoparticles hold promise as double-edged sword against genital herpes April 28th, 2016

Arrowhead Pharmaceuticals Files for Regulatory Clearance to Begin Phase 1/2 Study of ARC-521 April 28th, 2016

The Translational Research Center at the University Hospital of Erlangen in Germany uses the ZetaView from Particle Metrix to quantify extracellular vesicles such as exosomes April 28th, 2016

Announcements

Nanoparticles present sustainable way to grow food crops May 1st, 2016

Clay nanotube-biopolymer composite scaffolds for tissue engineering May 1st, 2016

Cooling graphene-based film close to pilot-scale production April 30th, 2016

Personal cooling units on the horizon April 29th, 2016

Tools

Exploring phosphorene, a promising new material April 29th, 2016

JPK reports on the use of a NanoWizard AFM system at the University of Kaiserslautern to study the interaction of bacteria with microstructured surfaces April 28th, 2016

Chemists use DNA to build the world's tiniest thermometer April 27th, 2016

Bruker Introduces Dimension FastScan Pro Industrial AFM: Providing Nanometer-Resolution at High Scan Rates for up to 300-mm Samples April 26th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic