Nanotechnology Now

Our NanoNews Digest Sponsors


Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Ancient enzymes function like nanopistons to unwind RNA: DEAD-box proteins function as recycling nanopistons when unwinding RNA

Abstract:
Molecular biologists at The University of Texas at Austin have solved one of the mysteries of how double-stranded RNA is remodeled inside cells in both their normal and disease states. The discovery may have implications for treating cancer and viruses in humans.

Ancient enzymes function like nanopistons to unwind RNA: DEAD-box proteins function as recycling nanopistons when unwinding RNA

Austin, TX | Posted on September 2nd, 2012

The research, which was published this week in Nature, found that DEAD-box proteins, which are ancient enzymes found in all forms of life, function as recycling "nanopistons." They use chemical energy to clamp down and pry open RNA strands, thereby enabling the formation of new structures.

"If you want to couple fuel energy to mechanical work to drive strand separation, this is a very versatile mechanism," said co-author Alan Lambowitz, the Nancy Lee and Perry R. Bass Regents Chair in Molecular Biology in the College of Natural Sciences and Director of the Institute for Cellular and Molecular Biology.

In all cellular organisms RNA (ribonucleic acid) plays a fundamental role in the translation of genetic information into the synthesis of proteins. DEAD-box proteins are the largest family of what are known as " RNA helicases," which unwind RNA.

"It has been known for some time that these enzymes do not function like traditional helicases," said Eckhard Jankowsky, professor of biochemistry at Case Western Reserve University Medical School. "The manuscript now provides the critical information that explains how the unwinding reaction works. It marks a major step towards understanding the molecular mechanics for many steps in RNA biology."

Lambowitz said that the basic insight came when Anna Mallam, a post-doctoral researcher in his lab, hypothesized that DEAD-box proteins function modularly. One area on the protein binds to an ATP molecule, which is the energy source. Another area binds to the double-stranded RNA.

"Once the second domain is latched on to the RNA," said Mallam, "and the first has got its ATP, the 'piston' comes down. It has a sharp edge that drives between the two strands and also grabs on one strand and bends it out of the way."

Lambowitz, Mallam and their colleagues uncovered this mechanism in Mss116p, a DEAD-box protein in yeast. The mechanism is almost certainly universal to the entire family of the proteins, however, and therefore to all domains of life.

"Every DEAD-box protein that we know about has the same structure," said Lambowitz, "and they all presumably use the same mechanism."

Lambowitz said that the Mss116p proteins are particularly useful as a universal remodeling device because they can bind to any RNA.

"It recognizes the geometry of double-stranded RNA," he said. "It doesn't care about the sequence, and doesn't care about what it that particular RNA molecule's function is. It just sees it and binds and for that reason can be incorporated into many different cellular processes."

This flexibility of DEAD-box proteins is essential to the functioning of healthy cells, which rely on a range of RNA molecules for basic processes, including protein synthesis.

It's also hijacked in cancers, where over-expression of DEAD-box proteins may help drive uncontrolled cell proliferation, and in infections caused by bacteria, fungi, and viruses, which rely on specific DEAD-box proteins for their propagation.

"This is basic science," said Lambowitz. "Its major significance is in understanding, at the root, how this mechanism works. But when you understand how DEAD-box proteins function both in normal cellular processes and in disease processes, you can absolutely begin to think about how they might be targeted in things like cancer and viruses."

"You can even envision, in the far future, how they be incorporated into artificial nanomachines, for switches and other mechanical devices inside and outside the cell."

####

For more information, please click here

Contacts:
Daniel Oppenheimer

512-745-3353

Copyright © University of Texas at Austin

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Oxford Instruments Asylum Research and McGill University Announce the McGill AFM Summer School and Workshop, May 12-13, 2016 May 4th, 2016

The intermediates in a chemical reaction photographed 'red-handed' Researchers at the UPV/EHU-University of the Basque Country have for the first time succeeded in imaging all the steps in a complex organic reaction and have resolved the mechanisms that explain it May 4th, 2016

New tool allows scientists to visualize 'nanoscale' processes May 4th, 2016

FEI Launches Apreo Industry-Leading Versatile, High-Performance SEM: The Apreo SEM provides high-resolution surface information with excellent contrast, and the flexibility to accommodate a large range of samples, applications and conditions May 4th, 2016

Possible Futures

The intermediates in a chemical reaction photographed 'red-handed' Researchers at the UPV/EHU-University of the Basque Country have for the first time succeeded in imaging all the steps in a complex organic reaction and have resolved the mechanisms that explain it May 4th, 2016

New tool allows scientists to visualize 'nanoscale' processes May 4th, 2016

Little ANTs: Researchers build the world's tiniest engine May 3rd, 2016

An Experiment Seeks to Make Quantum Physics Visible to the Naked Eye May 3rd, 2016

Molecular Machines

Little ANTs: Researchers build the world's tiniest engine May 3rd, 2016

Researchers create artificial protein to control assembly of buckyballs April 27th, 2016

Physicists build engine consisting of one atom: World's smallest heat engine uses just a single particle April 17th, 2016

Revealing the fluctuations of flexible DNA in 3-D: First-of-their-kind images by Berkeley Lab-led research team could aid in use of DNA to build nanoscale devices March 31st, 2016

Molecular Nanotechnology

Little ANTs: Researchers build the world's tiniest engine May 3rd, 2016

Researchers create artificial protein to control assembly of buckyballs April 27th, 2016

Physicists build engine consisting of one atom: World's smallest heat engine uses just a single particle April 17th, 2016

Physicists prove energy input predicts molecular behavior: Theoretical proof could lead to more reliable nanomachines March 22nd, 2016

Discoveries

The intermediates in a chemical reaction photographed 'red-handed' Researchers at the UPV/EHU-University of the Basque Country have for the first time succeeded in imaging all the steps in a complex organic reaction and have resolved the mechanisms that explain it May 4th, 2016

New tool allows scientists to visualize 'nanoscale' processes May 4th, 2016

A compact, efficient single photon source that operates at ambient temperatures on a chip: Highly directional single photon source concept is expected to lead to a significant progress in producing compact, cheap, and efficient sources of quantum information bits for future appls May 3rd, 2016

Nuclear pores captured on film: Using an ultra fast-scanning atomic force microscope, researchers from the University of Basel have filmed 'living' nuclear pore complexes at work for the first time May 3rd, 2016

Announcements

Oxford Instruments Asylum Research and McGill University Announce the McGill AFM Summer School and Workshop, May 12-13, 2016 May 4th, 2016

The intermediates in a chemical reaction photographed 'red-handed' Researchers at the UPV/EHU-University of the Basque Country have for the first time succeeded in imaging all the steps in a complex organic reaction and have resolved the mechanisms that explain it May 4th, 2016

New tool allows scientists to visualize 'nanoscale' processes May 4th, 2016

FEI Launches Apreo Industry-Leading Versatile, High-Performance SEM: The Apreo SEM provides high-resolution surface information with excellent contrast, and the flexibility to accommodate a large range of samples, applications and conditions May 4th, 2016

Nanobiotechnology

The intermediates in a chemical reaction photographed 'red-handed' Researchers at the UPV/EHU-University of the Basque Country have for the first time succeeded in imaging all the steps in a complex organic reaction and have resolved the mechanisms that explain it May 4th, 2016

Nuclear pores captured on film: Using an ultra fast-scanning atomic force microscope, researchers from the University of Basel have filmed 'living' nuclear pore complexes at work for the first time May 3rd, 2016

Little ANTs: Researchers build the world's tiniest engine May 3rd, 2016

New drug-delivery approach holds potential for treating obesity May 2nd, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic