Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > Picosun’s new Picoflow™ diffusion enhancer expands the borders of ALD

Abstract:
ESPOO, Finland, 30th August, 2012 − Picosun Oy, Finnish, globally operating manufacturer of top-quality Atomic Layer Deposition (ALD) systems reports excellent deposition results with its new Picoflow™ diffusion enhancer feature. At customer sites in Asia and Europe, ultra-high conformality and uniformity ALD metal oxide thin films were deposited on extremely challenging high aspect ratio (HAR) trenches on silicon wafers and complicated microchannel structures on silicon chip.

Picosun’s new Picoflow™ diffusion enhancer expands the borders of ALD

Espoo, Finland | Posted on August 30th, 2012

The highest aspect ratios of the trenches were 1:300 and even 1:1000. In such deep structures conventional diffusion is not fast enough to carry the precursors to the bottom of the trench. Picosun's novel, innovative Picoflow™ diffusion enhancer feature lengthens the time the precursors stay in the reaction chamber ("stopped-flow") without risk of precursor back-diffusion to the inlets or particle formation. In addition to HAR structures, this feature is very useful also when coating powders or through-porous samples such as microchannel plates. Titanium dioxide film thickness variation down to only ±2 nm for 100 nm thick film has been achieved with Picoflow™ technology.

Microchannel silicon chips have several applications in e.g. microfluidistics, sensors and MEMS devices. With ALD thin films they can be protected, passivated or functionalized, changing the hydrophilicity, chemical, electrical or optical behaviour.

Silicon trench structures have a crucial function in today's micro- and nanoelectronics. The level of system integration and the amount of individual components in the devices has increased so much that the traditional 2D component stacking is not enough anymore. Therefore the production has moved towards 3D packaging where the components are piled on top of each other and the necessary connections are realized through so-called through-silicon-via (TSV) structures. TSVs are a prime example of trench structures and typically conductive metal films, seed layers or passivation layers are required to cover uniformly and conformally the insides of the trench. Picosun's Picoflow™ expands the possibilities of ALD in these new industrial applications for more efficient future electronics devices.

####

About Picosun Oy
Picosun Oy is Finland-based, world-wide operating manufacturer of state-of-the-art ALD systems, representing continuity to almost four decades of pioneering, exclusive ALD reactor design and manufacturing. Picosun’s global headquarters are located in Espoo, Finland, its production facilities in Kirkkonummi, Finland, its US headquarters in Detroit, Michigan, and its Asian headquarters in Singapore. Today, PICOSUN™ ALD tools are in continuous production and R&D use in numerous frontline industries and research organizations across four continents.

For more information, please click here

Contacts:
Juhana Kostamo
Phone: +358 50 321 1955
Fax: +358 9 297 6116

Copyright © Picosun Oy

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Engineers develop new materials for hydrogen storage April 15th, 2014

Nanocrystalline cellulose modified into an efficient viral inhibitor April 15th, 2014

Tiny particles could help verify goods: Chemical engineers hope smartphone-readable microparticles could crack down on counterfeiting April 15th, 2014

A molecular approach to solar power: Switchable material could harness the power of the sun — even when it’s not shining April 15th, 2014

Thin films

Industry Veteran Fergus Clarke Joins Picodeon as CEO: Appointment comes as Picodeon prepares for growth April 8th, 2014

Scalable CVD process for making 2-D molybdenum diselenide: Rice, NTU scientists unveil CVD production for coveted 2-D semiconductor April 8th, 2014

High-quality nanometric bilayers prepared by aqueous solutions March 26th, 2014

A new concept for manufacturing wrinkling patterns on hard-nano-film/soft-matter-substrate March 24th, 2014

Chip Technology

Scientists open door to better solar cells, superconductors and hard-drives: Research enhances understanding of materials interfaces April 14th, 2014

Obducat has launched a new generation of SINDRE® Nano Imprint production system April 11th, 2014

Scientists in Singapore develop novel ultra-fast electrical circuits using light-generated tunneling currents April 10th, 2014

Nanotech Business Review 2013-2014 April 9th, 2014

Nanoelectronics

Better solar cells, better LED light and vast optical possibilities April 12th, 2014

Catching the (Invisible) Wave: UC Santa Barbara researchers create a unique semiconductor that manipulates light in the invisible infrared/terahertz range, paving the way for new and enhanced applications April 11th, 2014

Nanotech Business Review 2013-2014 April 9th, 2014

Preview of Hands-on Nanotechnology Demos at ‘Chemistry of Wine’ Fundraiser to Show Nanotech Magic April 8th, 2014

Announcements

Tiny particles could help verify goods: Chemical engineers hope smartphone-readable microparticles could crack down on counterfeiting April 15th, 2014

A molecular approach to solar power: Switchable material could harness the power of the sun — even when it’s not shining April 15th, 2014

Targeting cancer with a triple threat: MIT chemists design nanoparticles that can deliver three cancer drugs at a time April 15th, 2014

Biologists Develop Nanosensors to Visualize Movements and Distribution of Plant Stress Hormone April 15th, 2014

Tools

Affordable High Precision XY Nanopositioning Piezo Stage April 15th, 2014

Obducat has launched a new generation of SINDRE® Nano Imprint production system April 11th, 2014

Catching the (Invisible) Wave: UC Santa Barbara researchers create a unique semiconductor that manipulates light in the invisible infrared/terahertz range, paving the way for new and enhanced applications April 11th, 2014

Agilent Technologies Announces Fourth NanoMeasure Scientific Symposium: National Center for Nanoscience and Technology in Beijing to Host Event April 10th, 2014

NanoNews-Digest
The latest news from around the world, FREE







  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE