Nanotechnology Now

Our NanoNews Digest Sponsors



Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > Picosun’s new Picoflow™ diffusion enhancer expands the borders of ALD

Abstract:
ESPOO, Finland, 30th August, 2012 − Picosun Oy, Finnish, globally operating manufacturer of top-quality Atomic Layer Deposition (ALD) systems reports excellent deposition results with its new Picoflow™ diffusion enhancer feature. At customer sites in Asia and Europe, ultra-high conformality and uniformity ALD metal oxide thin films were deposited on extremely challenging high aspect ratio (HAR) trenches on silicon wafers and complicated microchannel structures on silicon chip.

Picosun’s new Picoflow™ diffusion enhancer expands the borders of ALD

Espoo, Finland | Posted on August 30th, 2012

The highest aspect ratios of the trenches were 1:300 and even 1:1000. In such deep structures conventional diffusion is not fast enough to carry the precursors to the bottom of the trench. Picosun's novel, innovative Picoflow™ diffusion enhancer feature lengthens the time the precursors stay in the reaction chamber ("stopped-flow") without risk of precursor back-diffusion to the inlets or particle formation. In addition to HAR structures, this feature is very useful also when coating powders or through-porous samples such as microchannel plates. Titanium dioxide film thickness variation down to only ±2 nm for 100 nm thick film has been achieved with Picoflow™ technology.

Microchannel silicon chips have several applications in e.g. microfluidistics, sensors and MEMS devices. With ALD thin films they can be protected, passivated or functionalized, changing the hydrophilicity, chemical, electrical or optical behaviour.

Silicon trench structures have a crucial function in today's micro- and nanoelectronics. The level of system integration and the amount of individual components in the devices has increased so much that the traditional 2D component stacking is not enough anymore. Therefore the production has moved towards 3D packaging where the components are piled on top of each other and the necessary connections are realized through so-called through-silicon-via (TSV) structures. TSVs are a prime example of trench structures and typically conductive metal films, seed layers or passivation layers are required to cover uniformly and conformally the insides of the trench. Picosun's Picoflow™ expands the possibilities of ALD in these new industrial applications for more efficient future electronics devices.

####

About Picosun Oy
Picosun Oy is Finland-based, world-wide operating manufacturer of state-of-the-art ALD systems, representing continuity to almost four decades of pioneering, exclusive ALD reactor design and manufacturing. Picosun’s global headquarters are located in Espoo, Finland, its production facilities in Kirkkonummi, Finland, its US headquarters in Detroit, Michigan, and its Asian headquarters in Singapore. Today, PICOSUN™ ALD tools are in continuous production and R&D use in numerous frontline industries and research organizations across four continents.

For more information, please click here

Contacts:
Juhana Kostamo
Phone: +358 50 321 1955
Fax: +358 9 297 6116

Copyright © Picosun Oy

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Atom-thick CCD could capture images: Rice University scientists develop two-dimensional, light-sensitive material December 20th, 2014

Oregon researchers glimpse pathway of sunlight to electricity: Collaboration with Lund University uses modified UO spectroscopy equipment to study 'maze' of connections in photoactive quantum dots December 19th, 2014

Instant-start computers possible with new breakthrough December 19th, 2014

Aculon Hires New Business Development Director December 19th, 2014

Thin films

'Giant' charge density disturbances discovered in nanomaterials: Juelich researchers amplify Friedel oscillations in thin metallic films November 26th, 2014

New way to move atomically thin semiconductors for use in flexible devices November 13th, 2014

Graphene Frontiers Partners with Madico to Accelerate Material Production: Deal to ignite and fulfill demand for industrial scale graphene film that supports energy, consumer electronics, membranes/filtration, solar and other applications November 12th, 2014

New materials for more powerful solar cells: Major breakthrough in solar energy November 11th, 2014

Chip Technology

Instant-start computers possible with new breakthrough December 19th, 2014

Switching to spintronics: Berkeley Lab reports on electric field switching of ferromagnetism at room temp December 17th, 2014

Pb islands in a sea of graphene magnetise the material of the future December 16th, 2014

Stanford team combines logic, memory to build a 'high-rise' chip: Today circuit cards are laid out like single-story towns; Futuristic architecture builds layers of logic and memory into skyscraper chips that would be smaller, faster, cheaper -- and taller December 15th, 2014

Nanoelectronics

Stacking two-dimensional materials may lower cost of semiconductor devices December 11th, 2014

Defects are perfect in laser-induced graphene: Rice University lab discovers simple way to make material for energy storage, electronics December 10th, 2014

Nanoscale resistors for quantum devices: The electrical characteristics of new thin-film chromium oxide resistors that can be tuned by controlling the oxygen content detailed in the 'Journal of Applied Physics' December 9th, 2014

'Giant' charge density disturbances discovered in nanomaterials: Juelich researchers amplify Friedel oscillations in thin metallic films November 26th, 2014

Announcements

Atom-thick CCD could capture images: Rice University scientists develop two-dimensional, light-sensitive material December 20th, 2014

Oregon researchers glimpse pathway of sunlight to electricity: Collaboration with Lund University uses modified UO spectroscopy equipment to study 'maze' of connections in photoactive quantum dots December 19th, 2014

Instant-start computers possible with new breakthrough December 19th, 2014

Aculon Hires New Business Development Director December 19th, 2014

Tools

Atom-thick CCD could capture images: Rice University scientists develop two-dimensional, light-sensitive material December 20th, 2014

Oregon researchers glimpse pathway of sunlight to electricity: Collaboration with Lund University uses modified UO spectroscopy equipment to study 'maze' of connections in photoactive quantum dots December 19th, 2014

Switching to spintronics: Berkeley Lab reports on electric field switching of ferromagnetism at room temp December 17th, 2014

ORNL microscopy pencils patterns in polymers at the nanoscale December 17th, 2014

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE