Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Picosun’s new Picoflow™ diffusion enhancer expands the borders of ALD

Abstract:
ESPOO, Finland, 30th August, 2012 − Picosun Oy, Finnish, globally operating manufacturer of top-quality Atomic Layer Deposition (ALD) systems reports excellent deposition results with its new Picoflow™ diffusion enhancer feature. At customer sites in Asia and Europe, ultra-high conformality and uniformity ALD metal oxide thin films were deposited on extremely challenging high aspect ratio (HAR) trenches on silicon wafers and complicated microchannel structures on silicon chip.

Picosun’s new Picoflow™ diffusion enhancer expands the borders of ALD

Espoo, Finland | Posted on August 30th, 2012

The highest aspect ratios of the trenches were 1:300 and even 1:1000. In such deep structures conventional diffusion is not fast enough to carry the precursors to the bottom of the trench. Picosun's novel, innovative Picoflow™ diffusion enhancer feature lengthens the time the precursors stay in the reaction chamber ("stopped-flow") without risk of precursor back-diffusion to the inlets or particle formation. In addition to HAR structures, this feature is very useful also when coating powders or through-porous samples such as microchannel plates. Titanium dioxide film thickness variation down to only ±2 nm for 100 nm thick film has been achieved with Picoflow™ technology.

Microchannel silicon chips have several applications in e.g. microfluidistics, sensors and MEMS devices. With ALD thin films they can be protected, passivated or functionalized, changing the hydrophilicity, chemical, electrical or optical behaviour.

Silicon trench structures have a crucial function in today's micro- and nanoelectronics. The level of system integration and the amount of individual components in the devices has increased so much that the traditional 2D component stacking is not enough anymore. Therefore the production has moved towards 3D packaging where the components are piled on top of each other and the necessary connections are realized through so-called through-silicon-via (TSV) structures. TSVs are a prime example of trench structures and typically conductive metal films, seed layers or passivation layers are required to cover uniformly and conformally the insides of the trench. Picosun's Picoflow™ expands the possibilities of ALD in these new industrial applications for more efficient future electronics devices.

####

About Picosun Oy
Picosun Oy is Finland-based, world-wide operating manufacturer of state-of-the-art ALD systems, representing continuity to almost four decades of pioneering, exclusive ALD reactor design and manufacturing. Picosun’s global headquarters are located in Espoo, Finland, its production facilities in Kirkkonummi, Finland, its US headquarters in Detroit, Michigan, and its Asian headquarters in Singapore. Today, PICOSUN™ ALD tools are in continuous production and R&D use in numerous frontline industries and research organizations across four continents.

For more information, please click here

Contacts:
Juhana Kostamo
Phone: +358 50 321 1955
Fax: +358 9 297 6116

Copyright © Picosun Oy

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Basque researchers turn light upside down February 23rd, 2018

Stiffness matters February 23rd, 2018

Imaging individual flexible DNA 'building blocks' in 3-D: Berkeley Lab researchers generate first images of 129 DNA structures February 22nd, 2018

'Memtransistor' brings world closer to brain-like computing: Combined memristor and transistor can process information and store memory with one device February 22nd, 2018

Thin films

A simple new approach to plastic solar cells: Osaka University researchers intelligently design new highly efficient organic solar cells based on amorphous electronic materials with potential for easy printing January 28th, 2018

Scientists reveal the fundamental limitation in the key material for solid-state lighting January 25th, 2018

Particle size matters for porous building blocks: Rice University scientists find porous nanoparticles get tougher under pressure, but not when assembled December 19th, 2017

MIPT scientists revisit optical constants of ultrathin gold films October 20th, 2017

Chip Technology

Basque researchers turn light upside down February 23rd, 2018

Imaging individual flexible DNA 'building blocks' in 3-D: Berkeley Lab researchers generate first images of 129 DNA structures February 22nd, 2018

'Memtransistor' brings world closer to brain-like computing: Combined memristor and transistor can process information and store memory with one device February 22nd, 2018

Photonic chip guides single photons, even when there are bends in the road February 16th, 2018

Nanoelectronics

Basque researchers turn light upside down February 23rd, 2018

Graphene on toast, anyone? Rice University scientists create patterned graphene onto food, paper, cloth, cardboard February 13th, 2018

Vanadium dioxyde: A revolutionary material for tomorrow's electronics: Phase-chance switch can now be performed at higher temperatures February 5th, 2018

Measuring the temperature of two-dimensional materials at the atomic level February 3rd, 2018

Announcements

Basque researchers turn light upside down February 23rd, 2018

Stiffness matters February 23rd, 2018

Histology in 3-D: New staining method enables Nano-CT imaging of tissue samples February 22nd, 2018

Developing reliable quantum computers February 22nd, 2018

Tools

Basque researchers turn light upside down February 23rd, 2018

Histology in 3-D: New staining method enables Nano-CT imaging of tissue samples February 22nd, 2018

Imaging individual flexible DNA 'building blocks' in 3-D: Berkeley Lab researchers generate first images of 129 DNA structures February 22nd, 2018

MEMS chips get metatlenses: Combining metasurface lenses with MEMS technology could add high-speed scanning and enhance focusing capability of optical systems February 21st, 2018

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project