Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > New imaging technique homes in on electrocatalysis of nanoparticles

Abstract:
By modifying the rate at which chemical reactions take place, nanoparticle catalysts fulfill myriad roles in industry, the biomedical arena and everyday life. They may be used for the production of polymers and biofuels, for improving pollution and emission control devices, to enhance reactions essential for fuel cell technology and for the synthesis of new drugs. Finding new and more effective nanoparticle catalysts to perform these useful functions is therefore vital.

New imaging technique homes in on electrocatalysis of nanoparticles

Tempe, AZ | Posted on August 28th, 2012

Now Nongjian (NJ) Tao—a researcher at Arizona State University's Biodesign Institute—has found a clever way to measure catalytical reactions of single nanoparticles and multiple particles printed in arrays, which will help characterize and improve existing nanoparticle catalysts, and advance the search for new ones.

Most catalytic materials synthesized in labs contain particles with different sizes and shapes, each having different electrocatalytical activities, but the conventional methods measure the average properties of many nanoparticles, which smear out the properties of individual nanoparticles.

"The capability of measuring single nanoparticle catalytical reactions allows for determining the relationship between the efficiency of a catalytical reaction and the size, shape, and composition of the nanoparticle." Tao explained. "Such an imaging capability also makes it possible to image arrays of nanoparticle catalytical reactions, which may be used for fast screening of different nanoparticles," he added.

In the current study, platinum nanoparticles acting as electrochemical catalysts are investigated by means of the new technique, known as plasmonic electrochemical imaging. The method combines the spatial resolution of optical detection with the high sensitivity and selectivity of electrochemical recognition.

Results of the study appear in this week's advanced online edition of the journal Nature Nanotechnology.

Scanning electrochemical microscopy (SECM) has been used to image electrochemical reactions by mechanically scanning a sample surface using a microelectrode. In this process however, imaging speed is limited and the presence of the microelectrode itself may impinge on the sample and alter results.

The new method relies instead on imaging electrochemical reactions optically based on the phenomenon of surface plasmon resonance. Surface plasmons are oscillations of free electrons in a metal electrode, and can be created and detected with light. Every electrochemical reaction is accompanied by the exchange of electrons between reactants and electrodes, and the conventional electrochemical methods, including SECM, detect the electrons.

"Our approach is to measure electrochemical reactions without directly detecting the electrons." Tao said. "The trick is to detect the conversion of the reactant into reaction products associated with the exchange of electrons." Such conversion in the vicinity of the electrode affects the plasmon, causing changes in light reflectivity, which the technique converts to an optical image.

Using plasmonic electrochemical current imaging, Tao's group examined the electrocatalytic activity of platinum nanoparticles printed in a microarray on a gold thin-film electrode, demonstrating for the first time the feasibility of high-throughput screening of the catalytic activities of nanoparticles.

Additionally, the new study shows that the same method can be used to investigate individual nanoparticles. As an electrical potential is applied to the electrode and cycled through a range of values, nanoparticles clearly appear as spots on the array. The effect can be seen in accompanying videos, where nanoparticle spots ‘develop' over time as the potential changes, much like a polaroid picture gradually appears.

Microarrays featuring different surface densities of nanoparticles were also produced for the study. Results showed that electrocatalytic current at a given potential increases proportionally with nanoparticle density. Further, when individual nanoparticles were characterized using SPR microscopy, atomic force microscopy (AFM) and transmission electron microscopy (TEM), good agreement was shown between the results, further validating the new technique.

Tao notes that in principle, plasmonic electrochemical imaging— a rapid and non-invasive technique offering the combined benefits of optical and electrochemical detection—may be applied to other phenomena for which conventional electrochemical detection methods are currently used.

In addition to his appointment as the Director of the Center for Bioelectronics and Biosensors at the Biodesign Institute, Tao is Ira A. Fulton School of Engineering, School of Electrical, Computer and Energy Engineering.

####

For more information, please click here

Contacts:
Written by: Richard Harth
Science Writer: The Biodesign Institute


Joseph Caspermeyer

Copyright © Arizona State University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Northwestern researchers achieve unprecedented control of polymer grids: Materials could find applications in water purification, solar energy storage, body armor June 22nd, 2018

Nanobiotix Publishes Positive Phase 2/3 Data For Nanomedicine in Soft Tissue Cancer (Webcast June 22) June 22nd, 2018

Alzheimer's breakthrough: Brain metals that may drive disease progression revealed: In brains affected by Alzheimer's, researchers identify chemically reduced iron species, with mineral forms including a magnetic iron oxide June 22nd, 2018

Collaboration yields discovery of 12-sided silica cages June 20th, 2018

Imaging

Alzheimer's breakthrough: Brain metals that may drive disease progression revealed: In brains affected by Alzheimer's, researchers identify chemically reduced iron species, with mineral forms including a magnetic iron oxide June 22nd, 2018

Collaboration yields discovery of 12-sided silica cages June 20th, 2018

Chemistry

Quantum Interference May Be Key to Smaller Insulators: Breakthrough could jumpstart further miniaturization of transistors June 6th, 2018

Density gradient ultracentrifugation for colloidal nanostructures separation and investigation June 5th, 2018

From Face Recognition to Phase Recognition: Neural Network Captures Atomic-Scale Rearrangements: Scientists use approach analogous to facial-recognition technology to track atomic-scale rearrangements relevant to phase changes, catalytic reactions, and more May 31st, 2018

Northwestern researchers predict materials to stabilize record-high capacity lithium-ion battery: Advancement could pave the way for less expensive, longer-lasting batteries for electric vehicles May 29th, 2018

Discoveries

Alzheimer's breakthrough: Brain metals that may drive disease progression revealed: In brains affected by Alzheimer's, researchers identify chemically reduced iron species, with mineral forms including a magnetic iron oxide June 22nd, 2018

Collaboration yields discovery of 12-sided silica cages June 20th, 2018

Carbon nanotube optics poised to provide pathway to optical-based quantum cryptography and quantum computing: Researchers are exploring enhanced potential of carbon nanotubes for unique applications June 18th, 2018

Camouflaged nanoparticles used to deliver killer protein to cancer June 17th, 2018

Announcements

Northwestern researchers achieve unprecedented control of polymer grids: Materials could find applications in water purification, solar energy storage, body armor June 22nd, 2018

Nanobiotix Publishes Positive Phase 2/3 Data For Nanomedicine in Soft Tissue Cancer (Webcast June 22) June 22nd, 2018

Alzheimer's breakthrough: Brain metals that may drive disease progression revealed: In brains affected by Alzheimer's, researchers identify chemically reduced iron species, with mineral forms including a magnetic iron oxide June 22nd, 2018

Collaboration yields discovery of 12-sided silica cages June 20th, 2018

Energy

Northwestern researchers achieve unprecedented control of polymer grids: Materials could find applications in water purification, solar energy storage, body armor June 22nd, 2018

Physicists devise method to reveal how light affects materials: The new method adds to the understanding of the fundamental laws governing the interaction of electrons and light June 15th, 2018

Tripling the Energy Storage of Lithium-Ion Batteries: Scientists have synthesized a new cathode material from iron fluoride that surpasses the capacity limits of traditional lithium-ion batteries June 14th, 2018

Remote control of transport through nanopores: New study outlines key factors affecting the transfer of molecules through biological channels May 24th, 2018

Automotive/Transportation

Nickel ferrite promotes capacity and cycle stability of lithium-sulfur battery June 13th, 2018

Northwestern researchers predict materials to stabilize record-high capacity lithium-ion battery: Advancement could pave the way for less expensive, longer-lasting batteries for electric vehicles May 29th, 2018

Harvesting clean hydrogen fuel through artificial photosynthesis May 3rd, 2018

Research gives new ray of hope for solar fuel April 27th, 2018

Fuel Cells

Harvesting clean hydrogen fuel through artificial photosynthesis May 3rd, 2018

A new way to find better battery materials: Design principles could point to better electrolytes for next-generation lithium batteries March 29th, 2018

Rice sleuths find metal in 'metal-free' catalysts: Study of graphene catalysts finds trace of manganese, suggests better ultrathin fuel-cell components February 26th, 2018

Study boosts hope for cheaper fuel cells: Rice University researchers show how to optimize nanomaterials for fuel-cell cathodes January 6th, 2018

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project