Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > New imaging technique homes in on electrocatalysis of nanoparticles

Abstract:
By modifying the rate at which chemical reactions take place, nanoparticle catalysts fulfill myriad roles in industry, the biomedical arena and everyday life. They may be used for the production of polymers and biofuels, for improving pollution and emission control devices, to enhance reactions essential for fuel cell technology and for the synthesis of new drugs. Finding new and more effective nanoparticle catalysts to perform these useful functions is therefore vital.

New imaging technique homes in on electrocatalysis of nanoparticles

Tempe, AZ | Posted on August 28th, 2012

Now Nongjian (NJ) Tao—a researcher at Arizona State University's Biodesign Institute—has found a clever way to measure catalytical reactions of single nanoparticles and multiple particles printed in arrays, which will help characterize and improve existing nanoparticle catalysts, and advance the search for new ones.

Most catalytic materials synthesized in labs contain particles with different sizes and shapes, each having different electrocatalytical activities, but the conventional methods measure the average properties of many nanoparticles, which smear out the properties of individual nanoparticles.

"The capability of measuring single nanoparticle catalytical reactions allows for determining the relationship between the efficiency of a catalytical reaction and the size, shape, and composition of the nanoparticle." Tao explained. "Such an imaging capability also makes it possible to image arrays of nanoparticle catalytical reactions, which may be used for fast screening of different nanoparticles," he added.

In the current study, platinum nanoparticles acting as electrochemical catalysts are investigated by means of the new technique, known as plasmonic electrochemical imaging. The method combines the spatial resolution of optical detection with the high sensitivity and selectivity of electrochemical recognition.

Results of the study appear in this week's advanced online edition of the journal Nature Nanotechnology.

Scanning electrochemical microscopy (SECM) has been used to image electrochemical reactions by mechanically scanning a sample surface using a microelectrode. In this process however, imaging speed is limited and the presence of the microelectrode itself may impinge on the sample and alter results.

The new method relies instead on imaging electrochemical reactions optically based on the phenomenon of surface plasmon resonance. Surface plasmons are oscillations of free electrons in a metal electrode, and can be created and detected with light. Every electrochemical reaction is accompanied by the exchange of electrons between reactants and electrodes, and the conventional electrochemical methods, including SECM, detect the electrons.

"Our approach is to measure electrochemical reactions without directly detecting the electrons." Tao said. "The trick is to detect the conversion of the reactant into reaction products associated with the exchange of electrons." Such conversion in the vicinity of the electrode affects the plasmon, causing changes in light reflectivity, which the technique converts to an optical image.

Using plasmonic electrochemical current imaging, Tao's group examined the electrocatalytic activity of platinum nanoparticles printed in a microarray on a gold thin-film electrode, demonstrating for the first time the feasibility of high-throughput screening of the catalytic activities of nanoparticles.

Additionally, the new study shows that the same method can be used to investigate individual nanoparticles. As an electrical potential is applied to the electrode and cycled through a range of values, nanoparticles clearly appear as spots on the array. The effect can be seen in accompanying videos, where nanoparticle spots ‘develop' over time as the potential changes, much like a polaroid picture gradually appears.

Microarrays featuring different surface densities of nanoparticles were also produced for the study. Results showed that electrocatalytic current at a given potential increases proportionally with nanoparticle density. Further, when individual nanoparticles were characterized using SPR microscopy, atomic force microscopy (AFM) and transmission electron microscopy (TEM), good agreement was shown between the results, further validating the new technique.

Tao notes that in principle, plasmonic electrochemical imaging— a rapid and non-invasive technique offering the combined benefits of optical and electrochemical detection—may be applied to other phenomena for which conventional electrochemical detection methods are currently used.

In addition to his appointment as the Director of the Center for Bioelectronics and Biosensors at the Biodesign Institute, Tao is Ira A. Fulton School of Engineering, School of Electrical, Computer and Energy Engineering.

####

For more information, please click here

Contacts:
Written by: Richard Harth
Science Writer: The Biodesign Institute


Joseph Caspermeyer

Copyright © Arizona State University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Shape matters when light meets atom: Mapping the interaction of a single atom with a single photon may inform design of quantum devices December 4th, 2016

UTSA study describes new minimally invasive device to treat cancer and other illnesses: Medicine diffusion capsule could locally treat multiple ailments and diseases over several weeks December 3rd, 2016

Novel Electrode Structure Provides New Promise for Lithium-Sulfur Batteries December 3rd, 2016

Research Study: MetaSOLTM Shatters Solar Panel Efficiency Forecasts with Innovative New Coating: Coating Provides 1.2 Percent Absolute Enhancement to Triple Junction Solar Cells December 2nd, 2016

Imaging

Deep insights from surface reactions: Researchers use Stampede supercomputer to study new chemical sensing methods, desalination and bacterial energy production December 2nd, 2016

Controlled electron pulses November 30th, 2016

Novel silicon etching technique crafts 3-D gradient refractive index micro-optics November 28th, 2016

Chemistry

Deep insights from surface reactions: Researchers use Stampede supercomputer to study new chemical sensing methods, desalination and bacterial energy production December 2nd, 2016

Scientists shrink electron gun to matchbox size: Terahertz technology has the potential to enable new applications November 25th, 2016

Discoveries

Shape matters when light meets atom: Mapping the interaction of a single atom with a single photon may inform design of quantum devices December 4th, 2016

UTSA study describes new minimally invasive device to treat cancer and other illnesses: Medicine diffusion capsule could locally treat multiple ailments and diseases over several weeks December 3rd, 2016

Novel Electrode Structure Provides New Promise for Lithium-Sulfur Batteries December 3rd, 2016

Research Study: MetaSOLTM Shatters Solar Panel Efficiency Forecasts with Innovative New Coating: Coating Provides 1.2 Percent Absolute Enhancement to Triple Junction Solar Cells December 2nd, 2016

Announcements

Shape matters when light meets atom: Mapping the interaction of a single atom with a single photon may inform design of quantum devices December 4th, 2016

UTSA study describes new minimally invasive device to treat cancer and other illnesses: Medicine diffusion capsule could locally treat multiple ailments and diseases over several weeks December 3rd, 2016

Novel Electrode Structure Provides New Promise for Lithium-Sulfur Batteries December 3rd, 2016

Research Study: MetaSOLTM Shatters Solar Panel Efficiency Forecasts with Innovative New Coating: Coating Provides 1.2 Percent Absolute Enhancement to Triple Junction Solar Cells December 2nd, 2016

Energy

Research Study: MetaSOLTM Shatters Solar Panel Efficiency Forecasts with Innovative New Coating: Coating Provides 1.2 Percent Absolute Enhancement to Triple Junction Solar Cells December 2nd, 2016

Deep insights from surface reactions: Researchers use Stampede supercomputer to study new chemical sensing methods, desalination and bacterial energy production December 2nd, 2016

Throwing new light on printed organic solar cells December 1st, 2016

Physics, photosynthesis and solar cells: Researchers combine quantum physics and photosynthesis to make discovery that could lead to highly efficient, green solar cells November 30th, 2016

Automotive/Transportation

'Back to the Future' inspires solar nanotech-powered clothing November 15th, 2016

Nanocellulose in medicine and green manufacturing: American University professor develops method to improve performance of cellulose nanocrystals November 7th, 2016

Diamond nanothread: Versatile new material could prove priceless for manufacturing: Would you dress in diamond nanothreads? It's not as far-fetched as you might think November 3rd, 2016

Hybrid nanostructures hold hydrogen well: Rice University scientists say boron nitride-graphene hybrid may be right for next-gen green cars October 25th, 2016

Fuel Cells

Water vapor sets some oxides aflutter: Newly discovered phenomenon could affect materials in batteries and water-splitting devices October 3rd, 2016

Carbon-coated iron catalyst structure could lead to more-active fuel cells September 15th, 2016

Imperial College use Kleindiek micromanipulators in their research into electrochemical energy devices September 6th, 2016

Iowa State engineers treat printed graphene with lasers to enable paper electronics September 2nd, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project