Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Molecular capsules: Glowing with promise

Crystal structure of the copper capsule
Crystal structure of the copper capsule

Abstract:
Fluorescence has widespread applications, helping researchers to understand issues in the fundamental sciences and develop practical materials and devices. Among the useful fluorescent compounds in development, capsule-shaped molecular architectures, which possess both strong fluorescent properties and a nanometer-sized cavity, are particularly promising.

Molecular capsules: Glowing with promise

Tokyo, Japan | Posted on August 27th, 2012

Molecular cages and capsules can be prepared through a simple synthetic process called coordinative self-assembly. However, most of them are composed of precious metal ions such as palladium and platinum, and are non-emissive due to quenching by the heavy metals.

Now, Michito Yoshizawa, Zhiou Li, and co-workers from the Chemical Resources Laboratory at Tokyo Institute of Technology report novel molecular nanocapsules with the M2L4 composition (where M represents zinc, copper, platinum, palladium, nickel, cobalt, and manganese). Their zinc and copper capsules, in particular, display unique fluorescent properties.

The M2L4 capsules self-assemble from two metal ions and four bent ligands that include anthracene fluorophores (fluorescent parts). X-ray crystallographic analysis verified the closed shell structures where the large interior cavities of the capsules, around one nanometer in diameter, are shielded by eight anthracene panels.

The zinc capsule emitted strong blue fluorescence with a high quantum yield (80%), in sharp contrast to the weakly emissive nickel and manganese capsules and the non-emissive palladium, platinum, and cobalt capsules. The fluorescence of the copper capsule, on the other hand, depends on the solvent; for example, it shows blue emission in dimethyl sulfoxide but no emission in acetonitrile.

This study is the first to show such emissive properties of molecular capsules bearing an isolated large cavity. The researchers believe their nanocapsules could have novel applications in devices such as chemosensors, biological probes, and light-emitting diodes.

Reference:
・ Authors: Zhiou Li, Norifumi Kishi, Kenji Yoza, Munetaka Akita, Michito Yoshizawa*
・ Title of original paper: Isostructural M2L4 Molecular Capsules with Anthracene Shells: Synthesis, Crystal Structures, and Fluorescent Properties.
・ Journal, volume, pages and year: Chemistry - A European Journal, 18, 8358 (2012).
・ Digital Object Identifier (DOI): 10.1002/chem.201200155.
・ Affiliations: Chemical Resources Laboratory, Tokyo Institute of Technology.
・ Department website: www.res.titech.ac.jp/~smart/smart_e.html

####

About Tokyo Institute of Technology
As one of Japanís top universities, Tokyo Institute of Technology seeks to contribute to civilization, peace and prosperity in the world, and aims at developing global human capabilities par excellence through pioneering research and education in science and technology, including industrial and social management. To achieve this mission, we have an eye on educating highly moral students to acquire not only scientific expertise but also expertise in the liberal arts, and a balanced knowledge of the social sciences and humanities, all while researching deeply from basics to practice with academic mastery. Through these activities, we wish to contribute to global sustainability of the natural world and the support of human life.

For more information, please click here

Contacts:
Miwako Kato and Yukiko Tokida
Center for Public Information
Tokyo Institute of Technology
2-12-1, Ookayama, Meguro-ku, Tokyo 152-8550, Japan

http://www.titech.ac.jp/english/
Tel: +81-3-5734-2975
Fax: +81-3-5734-3661

Copyright © Tokyo Institute of Technology

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Traffic jam in empty space: New success for Konstanz physicists in studying the quantum vacuum January 22nd, 2017

A big nano boost for solar cells: Kyoto University and Osaka Gas effort doubles current efficiencies January 21st, 2017

Explaining how 2-D materials break at the atomic level January 20th, 2017

New research helps to meet the challenges of nanotechnology: Research helps to make the most of nanoscale catalytic effects for nanotechnology January 20th, 2017

Imaging

Chemists Cook up New Nanomaterial and Imaging Method: Nanomaterials can store all kinds of things, including energy, drugs and other cargo January 19th, 2017

Distinguishing truth under the surface: electrostatic or mechanic December 31st, 2016

Nanoscale 'conversations' create complex, multi-layered structures: New technique leverages controlled interactions across surfaces to create self-assembled materials with unprecedented complexity December 22nd, 2016

Safe and inexpensive hydrogen production as a future energy source: Osaka University researchers develop efficient 'green' hydrogen production system that operates at room temperature in air December 21st, 2016

Self Assembly

Self-assembling particles brighten future of LED lighting January 18th, 2017

Manchester scientists tie the tightest knot ever achieved January 13th, 2017

Captured on video: DNA nanotubes build a bridge between 2 molecular posts: Research may lead to new lines of direct communication with cells January 9th, 2017

Researchers fabricate high performance Cu(OH)2 supercapacitor electrodes December 29th, 2016

Discoveries

Traffic jam in empty space: New success for Konstanz physicists in studying the quantum vacuum January 22nd, 2017

A big nano boost for solar cells: Kyoto University and Osaka Gas effort doubles current efficiencies January 21st, 2017

Explaining how 2-D materials break at the atomic level January 20th, 2017

New research helps to meet the challenges of nanotechnology: Research helps to make the most of nanoscale catalytic effects for nanotechnology January 20th, 2017

Announcements

Traffic jam in empty space: New success for Konstanz physicists in studying the quantum vacuum January 22nd, 2017

A big nano boost for solar cells: Kyoto University and Osaka Gas effort doubles current efficiencies January 21st, 2017

A toolkit for transformable materials: How to design materials with reprogrammable shape and function January 20th, 2017

New research helps to meet the challenges of nanotechnology: Research helps to make the most of nanoscale catalytic effects for nanotechnology January 20th, 2017

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project