Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Laser-Assisted Synthesis of Graphene in Low-Temperature Liquid Media

Abstract:
Researchers from Tehran's Amirkabir University of Technology in a collaboration with their colleagues from Imam Khomeini International University in Qazvin succeeded in producing graphene by laser ablation in cold liquid media.

Laser-Assisted Synthesis of Graphene in Low-Temperature Liquid Media

Tehran, Iran | Posted on August 26th, 2012

Their proposed approach offers a better control over the type and quality of the resulting products as the involved laser processing is handled in a more facile manner.

The research addresses the fabrication of graphene by the utilization of neodymium:YAG laser in a liquid nitrogen medium. This simple scheme affords pure graphene without requiring any vacuum equipment, high temperature furnaces or long processing periods, all of which are costly. The proposed synthesis method is single-staged, fast, controllable and high-yielding in comparison with the conventional previous methods. To put it in a few words, the technique is based on the Nd:YAG laser shooting a graphite target inside a liquid medium at extremely low temperatures.

The mentioned cold medium can be liquid nitrogen, argon or helium thanks to which, laser irradiation parameters such as energy of the laser, pulsation repetition, pulse width, wavelength of the beam, etc. can conveniently be controlled.

A detailed report discussing the technical aspects of this research work has been published in Laser Physics Letters, volume 9, issue 7, pages 547 to 552. Furthermore, this technique has been patented provisionally with the USPTO under the number of 61640094.

####

For more information, please click here

Copyright © Fars News Agency

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Quantum twisted Loong confirms the physical reality of wavefunctions September 23rd, 2017

Application of air-sensitive semiconductors in nanoelectronics: 2-D semiconductor gallium selenide in encapsulated nanoelectronic devices September 22nd, 2017

Researchers set time limit for ultrafast perovskite solar cells September 22nd, 2017

DNA triggers shape-shifting in hydrogels, opening a new way to make 'soft robots' September 21st, 2017

Graphene/ Graphite

New quantum phenomena in graphene superlattices September 18th, 2017

Graphene based terahertz absorbers: Printable graphene inks enable ultrafast lasers in the terahertz range September 13th, 2017

UConn chemist synthesizes pure graphene August 30th, 2017

Ames Laboratory scientists move graphene closer to transistor applications August 30th, 2017

Discoveries

Quantum twisted Loong confirms the physical reality of wavefunctions September 23rd, 2017

Application of air-sensitive semiconductors in nanoelectronics: 2-D semiconductor gallium selenide in encapsulated nanoelectronic devices September 22nd, 2017

Researchers set time limit for ultrafast perovskite solar cells September 22nd, 2017

DNA triggers shape-shifting in hydrogels, opening a new way to make 'soft robots' September 21st, 2017

Announcements

Quantum twisted Loong confirms the physical reality of wavefunctions September 23rd, 2017

Application of air-sensitive semiconductors in nanoelectronics: 2-D semiconductor gallium selenide in encapsulated nanoelectronic devices September 22nd, 2017

Researchers set time limit for ultrafast perovskite solar cells September 22nd, 2017

DNA triggers shape-shifting in hydrogels, opening a new way to make 'soft robots' September 21st, 2017

Photonics/Optics/Lasers

Quantum twisted Loong confirms the physical reality of wavefunctions September 23rd, 2017

Application of air-sensitive semiconductors in nanoelectronics: 2-D semiconductor gallium selenide in encapsulated nanoelectronic devices September 22nd, 2017

Physicists develop new recipes for design of fast single-photon gun Physicists develop high-speed single-photon sources for quantum computers of the future September 21st, 2017

A new approach to ultrafast light pulses: Unusual fluorescent materials could be used for rapid light-based communications systems September 19th, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project