Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > The Laser Beam as a “3D Painter”

A complex 3D pattern created using photografting – an Echinodermania.
A complex 3D pattern created using photografting – an Echinodermania.

Abstract:
With laser beams, molecules can be fixed at exactly the right position in a three dimensional material. A new method developed at the Vienna University of Technology can be used to grow biological tissue or to create micro sensors.

The Laser Beam as a “3D Painter”

Germany | Posted on August 25th, 2012

With laser beams, molecules can be fixed at exactly the right position in a three dimensional material. A new method developed at the Vienna University of Technology can be used to grow biological tissue or to create micro sensors.

There are many ways to create three dimensional objects on a micrometer scale. But how can the chemical properties of a material be tuned to micrometer precision? Scientists at the Vienna University of Technology have developed a method to attach molecules at exactly the right place. When biological tissue is grown, this method can allow the positioning of chemical signals, telling living cells where to attach. The new technique also holds promise for sensor technology: A tiny three dimensional "lab on a chip" could be created, in which accurately positioned molecules react with substances from the environment.

Materials Science and Chemistry

"3D-photografting" is the name of the new method. Two research teams from the Vienna University of Technology collaborated closely to develop it: Professor Jürgen Stampfl's materials science team and Professor Robert Liska's research group for macromolecular chemistry.

Both research groups have already attracted considerable attention in the past, developing new kinds of 3D-printers. However, for the applications on which the scientists are working on now, 3D-printing would not have been useful: "Putting together a material from tiny building blocks with different chemical properties would be extremely complicated", says Aleksandr Ovsianikov. "That is why we start from a three dimensional scaffold and then attach the desired molecules at exactly the right positions."

Molecules in the Hydrogel - Locked into Position by the Laser

The scientists start with a so-called hydrogel - a material made of macromolecules, arranged in a loose meshwork. Between those molecules, large pores remain, through which other molecules or even cells can migrate.

Specially selected molecules are introduced into the hydrogel meshwork, then certain points are irradiated with a laser beam. At the positions where the focused laser beam is most intense, a photochemically labile bond is broken. That way, highly reactive intermediates are created which locally attach to the hydrogel very quickly. The precision depends on the laser's lens system, at the Vienna University of Technology a resolution of 4 µm could be obtained. "Much like an artist, placing colors at certain points of the canvas, we can place molecules in the hydrogel - but in three dimensions and with high precision", says Aleksandr Ovsianikov.

Chemical Signals for Cells

This method can be used to artificially grow biological tissue. Like a climbing plant clinging to a rack, cells need some scaffold at which they attach. In a natural tissue, the extracellular matrix does the trick by using specific amino acid sequences to signal the cells, where they are supposed to grow.

In the lab, scientists are trying to use similar chemical signals. In various experiments, cell attachment could be guided on two dimensional surfaces, but in order to grow larger tissues with a specific inner structure (such as capillaries), a truly three dimensional technique is required.

Micro Sensors Detect Molecules

Depending on the application, different molecules can be used. 3D photografting is not only useful for bio-engineering but also for other fields, such as photovoltaics or sensor technology. In a very small space, molecules can be positioned which attach to specific chemical substances and allow their detection. A microscopic three-dimensional "lab on a chip" becomes possible.

####

For more information, please click here

Copyright © Wiley-VCH Materials Science Journals

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Link to the original paper on Wiley Online Library:

Related News Press

News and information

Traffic jam in empty space: New success for Konstanz physicists in studying the quantum vacuum January 22nd, 2017

A big nano boost for solar cells: Kyoto University and Osaka Gas effort doubles current efficiencies January 21st, 2017

Explaining how 2-D materials break at the atomic level January 20th, 2017

New research helps to meet the challenges of nanotechnology: Research helps to make the most of nanoscale catalytic effects for nanotechnology January 20th, 2017

Ultra-precise chip-scale sensor detects unprecedentedly small changes at the nanoscale January 20th, 2017

3D printing/Additive-manufacturing

A toolkit for transformable materials: How to design materials with reprogrammable shape and function January 20th, 2017

Chemistry

Chemistry on the edge: Experiments at Berkeley Lab confirm that structural defects at the periphery are key in catalyst function January 13th, 2017

Researchers produced nitrogen doped bimodal cellular structure activated carbon December 29th, 2016

Safe and inexpensive hydrogen production as a future energy source: Osaka University researchers develop efficient 'green' hydrogen production system that operates at room temperature in air December 21st, 2016

Scientists boost catalytic activity for key chemical reaction in fuel cells: New platinum-based catalysts with tensile surface strain could improve fuel cell efficiency December 19th, 2016

Nanomedicine

New research helps to meet the challenges of nanotechnology: Research helps to make the most of nanoscale catalytic effects for nanotechnology January 20th, 2017

Chemists Cook up New Nanomaterial and Imaging Method: Nanomaterials can store all kinds of things, including energy, drugs and other cargo January 19th, 2017

'5-D protein fingerprinting' could give insights into Alzheimer's, Parkinson's January 19th, 2017

New active filaments mimic biology to transport nano-cargo: A new design for a fully biocompatible motility engine transports colloidal particles faster than diffusion with active filaments January 11th, 2017

Sensors

New research helps to meet the challenges of nanotechnology: Research helps to make the most of nanoscale catalytic effects for nanotechnology January 20th, 2017

Ultra-precise chip-scale sensor detects unprecedentedly small changes at the nanoscale January 20th, 2017

Chemists Cook up New Nanomaterial and Imaging Method: Nanomaterials can store all kinds of things, including energy, drugs and other cargo January 19th, 2017

Nanoscale Modifications can be used to Engineer Electrical Contacts for Nanodevices January 13th, 2017

Discoveries

Traffic jam in empty space: New success for Konstanz physicists in studying the quantum vacuum January 22nd, 2017

A big nano boost for solar cells: Kyoto University and Osaka Gas effort doubles current efficiencies January 21st, 2017

Explaining how 2-D materials break at the atomic level January 20th, 2017

New research helps to meet the challenges of nanotechnology: Research helps to make the most of nanoscale catalytic effects for nanotechnology January 20th, 2017

Materials/Metamaterials

A toolkit for transformable materials: How to design materials with reprogrammable shape and function January 20th, 2017

Explaining how 2-D materials break at the atomic level January 20th, 2017

Chemists Cook up New Nanomaterial and Imaging Method: Nanomaterials can store all kinds of things, including energy, drugs and other cargo January 19th, 2017

Strength of hair inspires new materials for body armor January 18th, 2017

Announcements

Traffic jam in empty space: New success for Konstanz physicists in studying the quantum vacuum January 22nd, 2017

A big nano boost for solar cells: Kyoto University and Osaka Gas effort doubles current efficiencies January 21st, 2017

A toolkit for transformable materials: How to design materials with reprogrammable shape and function January 20th, 2017

New research helps to meet the challenges of nanotechnology: Research helps to make the most of nanoscale catalytic effects for nanotechnology January 20th, 2017

Nanobiotechnology

New research helps to meet the challenges of nanotechnology: Research helps to make the most of nanoscale catalytic effects for nanotechnology January 20th, 2017

Chemists Cook up New Nanomaterial and Imaging Method: Nanomaterials can store all kinds of things, including energy, drugs and other cargo January 19th, 2017

'5-D protein fingerprinting' could give insights into Alzheimer's, Parkinson's January 19th, 2017

Nanoscale Modifications can be used to Engineer Electrical Contacts for Nanodevices January 13th, 2017

Photonics/Optics/Lasers

Traffic jam in empty space: New success for Konstanz physicists in studying the quantum vacuum January 22nd, 2017

Recreating conditions inside stars with compact lasers: Scientists offer a new path to creating the extreme conditions found in stars, using ultra-short laser pulses irradiating nanowires January 12th, 2017

New laser based on unusual physics phenomenon could improve telecommunications, computing January 12th, 2017

Researcher's discovery of new crystal structure holds promise for optoelectronic devices January 6th, 2017

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project