Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Joining the Un-Joinable: New polymer linking technology based on nano crystals developed in Kiel

The two polymer layers are stapled from the inside using nano crystals made of zink oxide. Conceptional drawing.
Copyright: CAU, Image: Jan Strüben
The two polymer layers are stapled from the inside using nano crystals made of zink oxide. Conceptional drawing.

Copyright: CAU, Image: Jan Strüben

Abstract:
Ever tried to paint on top of silicone? After a few hours, the paint will peel off. Annoying. Silicone is a so-called low surface energy polymer, well known from flexible baking forms: A synthetic material that has an extremely low adhesion or "stickiness". Teflon is similarly non-sticky and well known from frying pans. Researchers of Kiel University (Germany) have now developed the first technology which is capable of joining these two "unjoinable" materials. The technology applies passive nano-scaled crystal linkers as internal staples. The nano staples open up solutions to a large number of technical challenges, for example in medical engineering. The work carried out within the DFG-funded Collaborative Research Center 677 "Function by Switching" was published today (Friday, August 24th) in the scientific journal Advanced Materials.

Joining the Un-Joinable: New polymer linking technology based on nano crystals developed in Kiel

Kiel, Germany | Posted on August 25th, 2012

A new piece of technology

"If the nano staples make even extreme polymers like Teflon and silicone stick to each other, they can join all kinds of other plastic materials", says Professor Rainer Adelung. Adelung is leading the functional nano materials group at the Institute of Materials Science in Kiel and lead the research project from the materials science side. The new technology of joining materials without chemical modifications can be used, according to Adelung, in a variety of everyday life and high tech applications. The technique is easy to use and does not need expensive equipment or material.

Microscopic staples
The linkers are micro and nano scaled crystals made of zinc oxide. They are shaped like tetrapods, where four legs protrude from the point of origin. Large-scale tetrapods are known for their ability to interlock and form strong bonds, for example in coastal protection.

Stapling from the inside

During the joining process, the zinc oxide crystals are sprinkled evenly onto a heated layer of Teflon. Then, a layer of silicone is poured on top. In order to join the materials firmly, they are then heated to 100°Celsius for less than an hour. "It's like stapling two non-sticky materials from the inside with the crystals: When they are heated up, the nano tetrapods in between the polymer layers pierce the materials, sink into them, and get anchored", explains Xin Jin, the first author of the publication, who is currently working on her PhD thesis. Her colleague and supervisor, Dr. Yogendra Kumar Mishra, explains the adhesive principle: "If you try to pull out a tetrapod on one arm from a polymer layer, the shape of the tetrapod will simply cause three arms to dig in deeper and to hold on even firmer."

Stapling is better than gluing

In high technology businesses such as medical engineering, there is a strong demand for innovative ways to make polymers, particularly silicone, stick to other materials, for example to further develop breathing masks, implants or sensors. Medical applications require materials that are absolutely non-harmful, i.e. biocompatible. Many joining methods involve chemical reactions, which may change the polymers' properties and can cause injurious or even toxic effects on organisms. The tetrapod stapling, on the contrary, is a purely mechanical process. Therefore the Kiel team assumes it to be biocompatible.

As strong as sticky tape

With the tetrapod staples, the scientists have achieved a stickiness - the so-called peel strength - of 200 Newtons per meter, which is similar to peeling sticky tape off glass. "The stickiness we have achieved with the nano tetrapods is remarkable, because as far as we could verify, no one has ever made silicone and Teflon stick to each other at all", says co-author Lars Heepe, PhD student from the Zoological Institute of Kiel University, who precisely measured the adhesion and described what the stapled material looks like on the microscopic scale. "Measuring adhesion quantitatively is not as easy as it looks, precise experiments have to be carried out in order to prove the function of the linkers and rule out all errors", says Professor Stanislav Gorb, leading the group Functional Morphology and Biomechanics.

A joint, interdisciplinary effort

Three research groups from different backgrounds combined their expertise in material science, chemistry and biomechanics in this study within the Collaborative Research Center 677 "Function by Switching" (CRC 677). For Rainer Adelung and his colleagues, this study is not the end of the project: "We are feeding our results directly into both practical applications as well as further fundamental research." The scientists' local business partner nanoproofed GmbH is currently developing a product for paintings on top of silicone. In the framework of CRC 677, the staples are the basis for developing biomimetic adhesives, for which adhesion can be switched on and off by light of different colours.

Original publication:

X. Jin, J. Strueben, L. Heepe, A. Kovalev, Y.K. Mishra, R. Adelung, S.N. Gorb, A. Staubitz (2012): Joining the un-joinable: Adhesion between low surface energy polymers using tetrapodal ZnO linkers. Advances Materials, DOI: 10.1002/adma201201780

####

For more information, please click here

Contacts:
Prof. Rainer Adelung
Kiel University, Institute for Material Science


Kiel University
Press, Communication and Marketing, Dr. Boris Pawlowski
Editor: Stefanie Maack
Address: D-24098 Kiel
phone: +49 (0431) 880-2104
fax: +49 (0431) 880-1355

Copyright © Kiel University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Link to publication:

Website of CRC 677:

Related News Press

News and information

Simulating magnetization in a Heisenberg quantum spin chain April 5th, 2024

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Govt.-Legislation/Regulation/Funding/Policy

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Chemical reactions can scramble quantum information as well as black holes April 5th, 2024

The Access to Advanced Health Institute receives up to $12.7 million to develop novel nanoalum adjuvant formulation for better protection against tuberculosis and pandemic influenza March 8th, 2024

Nanomedicine

New micromaterial releases nanoparticles that selectively destroy cancer cells April 5th, 2024

Good as gold - improving infectious disease testing with gold nanoparticles April 5th, 2024

Researchers develop artificial building blocks of life March 8th, 2024

Curcumin nanoemulsion is tested for treatment of intestinal inflammation: A formulation developed by Brazilian researchers proved effective in tests involving mice March 8th, 2024

Discoveries

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

Chemical reactions can scramble quantum information as well as black holes April 5th, 2024

New micromaterial releases nanoparticles that selectively destroy cancer cells April 5th, 2024

Utilizing palladium for addressing contact issues of buried oxide thin film transistors April 5th, 2024

Materials/Metamaterials/Magnetoresistance

How surface roughness influences the adhesion of soft materials: Research team discovers universal mechanism that leads to adhesion hysteresis in soft materials March 8th, 2024

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

Focused ion beam technology: A single tool for a wide range of applications January 12th, 2024

Catalytic combo converts CO2 to solid carbon nanofibers: Tandem electrocatalytic-thermocatalytic conversion could help offset emissions of potent greenhouse gas by locking carbon away in a useful material January 12th, 2024

Announcements

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project