Nanotechnology Now







Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Shaking the electron has strengthened quantum mechanics

Beta decay
Beta decay

Abstract:
Atomic orbital electrons react to change of nucleus electric charge following each beta decay and to flying nearby particles emitted from the nucleus. NCBJ physicists have simulated such processes for the 6He nuclei. Theoretical calculations were recently confirmed by an experiment performed in the GAEN accelerator centre in Caen (France). That way the sudden approximation calculation method (one of the oldest methods employed to solve quantum mechanics problems) was directly validated.

Shaking the electron has strengthened quantum mechanics

Swierk, Poland | Posted on August 23rd, 2012

Decays of atomic nuclei are potential sources of information on fundamental phenomena occurring in the quantum world. Unfortunately it is a rather difficult task to model such processes. Yet NCBJ physicists have successfully simulated the process of neutron→ proton conversion in singly ionized 6He atom nucleus and correctly predicted its impact on the atomic orbital sole electron. Theoretical calculations were recently confirmed by an experiment performed in the GAEN accelerator centre in Caen (France). That way the sudden approximation calculation method (one of the oldest methods employed to solve quantum mechanics problems) was directly validated.

Nucleus of a 6He ion is composed of two protons and four neutrons. In a singly ionized ion the nucleus is orbited by a single electron. Surplus of neutrons makes such nuclei unstable, they undergo the so-called beta-minus decays in which one of the neutrons is transformed into a proton. To preserve electric charge, an electron is emitted from the decaying nucleus. Each emitted electron is accompanied by an electron anti-neutrino. In effect, a stable 6Li nucleus (still orbited by a single electron) is produced.

"During each beta-minus decay the orbiting (atomic) electron is impacted because of two reasons. Firstly, the total electric charge of the nucleus is changing since three protons are suddenly appearing in place of two protons. Secondly, a negatively charged emitted electron is flying nearby. It is plenty of stimulation for the orbiting electron: one might say that it is shaken very strongly. In result it is excited to a higher orbital or completely struck out of the atom" explains Professor Zygmunt Patyk from NCBJ.

Quantum mechanics uses wave functions to describe particles. The functions may be used to calculate probabilities that the particle will take some determined states.

"The 6He ion selected for calculations is almost a textbook case: single electron orbiting within a relatively simple potential well of the nucleus" said Dr. Katarzyna Siegień-Iwaniuk from NCBJ.

Electrons emitted by the decaying nuclei move at a speed close to the light velocity. They cross orbital electron clouds in times shorter than one billionth part of a nanosecond (i.e. 10-18 s). In quantum mechanics, problems in which interactions are so short are treated by finding a superposition of some final state wave functions (in our case: single electron within the 6Li ion) that jointly approximate the initial state wave function (in our case: single electron within the 6He ion). That trick is known as thesudden approximation method. It has been applied for many years (almost from the days quantum mechanics was born) but has never been directly verified in any experiment.

Professor Patyk's team has been collaborating with teams of physicists working in GAEN accelerator centre in Caen (Normandie, France) for several years. Calculations performed by NCBJ physicists to the accuracy of 4 significant places yielded the 2.3% probability that beta-decay will be liberating the sole orbital electron of the 6He ion, i.e. will be producing a totally ionized lithium atom. To a comparable accuracy that result was confirmed by some experiments performed at the French accelerator.

"Such a good agreement between theoretical predictions and experimental findings in such a simple (almost textbook) system is the first direct proof that the sudden approximation computational method utilized to solve quantum mechanics problems for almost a century is indeed correct" points out Professor Patyk.

NCBJ physicists have also managed to determine factors responsible for liberating the 6He sole orbital electron. The performed analyses have indicated that the ionization is caused in 99% cases by change of the nucleus total electric charge, and only in 1% cases by the fast electron emitted by the decaying nucleus.

The results co-authored by members of both collaborating teams were recently published in Physical Review Letters, a well-known scientific journal. The Polish team work was co-financed by a Polish Ministry for Science and Higher Education grant and by a Polish National Science Centre grant.

####

About National Center for Nuclear Research (NCBJ)
The Institute is a Polish state owned laboratory. It conducts pure and applied research on subatomic physics, i.e. elementary particle, astroparticle, plasma physics, low and high energy nuclear physics, and related fields. The Institute specializes in accelerator physics and technology, material research with nuclear techniques, the development of spectrometric techniques, nuclear electronics and also in applications of nuclear techniques to environmental research, nuclear medicine etc.

Apart from scientific departments, there is a separate production unit operating within the Institute - ZdAJ (the Establishment for Nuclear Equipment). This unit specializes in medical equipment, notably in the production of linear electron accelerators for oncology and in the production of linear accelerators for industry.

Main site of the Institute is located in Swierk, 30 km SE from Warsaw. There are also three scientific departments of IPJ located in Warsaw (Hoza Str. 69) and one scientific department located in Lodz (Uniwersytecka Str. 5).

For more information, please click here

Contacts:
Marcin Sadowski
+48 22 71 80 123

Copyright © AlphaGalileo

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Keysight Technologies Shifts to Direct Sales of High-Performance Products in North America March 3rd, 2015

Cambrios and Heraeus Jointly Create New, High-Conductivity Transparent Conductors: Two Companies' Combined Products Dramatically Extend Flexible Substrate Capabilities for Next-Generation Mass-Market Technology Products March 3rd, 2015

The taming of magnetic vortices: Unified theory for skyrmion-materials March 3rd, 2015

Democratizing synthetic biology: New method makes research cheaper, faster, and more accessible March 3rd, 2015

Physics

Breakthrough in OLED technology March 2nd, 2015

Forbidden quantum leaps possible with high-res spectroscopy March 2nd, 2015

Moving molecule writes letters: Caging of molecules allows investigation of equilibrium thermodynamics February 27th, 2015

Real-time observation of bond formation by using femtosecond X-ray liquidography February 26th, 2015

Govt.-Legislation/Regulation/Funding/Policy

The taming of magnetic vortices: Unified theory for skyrmion-materials March 3rd, 2015

Black phosphorus is new 'wonder material' for improving optical communication March 3rd, 2015

New nanodevice defeats drug resistance: Tiny particles embedded in gel can turn off drug-resistance genes, then release cancer drugs March 2nd, 2015

Forbidden quantum leaps possible with high-res spectroscopy March 2nd, 2015

Discoveries

The taming of magnetic vortices: Unified theory for skyrmion-materials March 3rd, 2015

Democratizing synthetic biology: New method makes research cheaper, faster, and more accessible March 3rd, 2015

Pens filled with high-tech inks for do-it-yourself sensors March 3rd, 2015

Black phosphorus is new 'wonder material' for improving optical communication March 3rd, 2015

Announcements

The taming of magnetic vortices: Unified theory for skyrmion-materials March 3rd, 2015

Democratizing synthetic biology: New method makes research cheaper, faster, and more accessible March 3rd, 2015

Pens filled with high-tech inks for do-it-yourself sensors March 3rd, 2015

Black phosphorus is new 'wonder material' for improving optical communication March 3rd, 2015

Grants/Awards/Scholarships/Gifts/Contests/Honors/Records

Rice's Stephan Link honored for nanoscience research: The Welch Foundation honors ‘rising star’ with $100,000 Hackerman Award February 26th, 2015

Cutting-edge technology optimizes cancer therapy with nanomedicine drug combinations: UCLA bioengineers develop platform that offers personalized approach to treatment February 24th, 2015

QD Vision Named Edison Award Finalist for Innovative Color IQ™ Quantum Dot Technology February 23rd, 2015

Rosetta Team Wins the National Space Society's Science and Engineering Space Pioneer Award February 23rd, 2015

Quantum nanoscience

Important step towards quantum computing: Metals at atomic scale March 2nd, 2015

Quantum many-body systems on the way back to equilibrium: Advances in experimental and theoretical physics enable a deeper understanding of the dynamics and properties of quantum many-body systems February 25th, 2015

Quantum research past, present and future for discussion at AAAS February 16th, 2015

Exotic states materialize with supercomputers February 12th, 2015

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2015 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE