Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Graphene’s behavior depends on where it sits: New findings show that the material beneath the thin carbon sheets determines how they react chemically and electrically

An image (made with Raman spectroscopy) of a graphene layer on top of a patterned substrate shows the difference in chemical reactivity of the side opposite the substrate. The wide red stripe is an area over a silicon dioxide substrate, making the top surface of the graphene highly reactive. The narrow blue stripe is graphene over a layer of hydrocarbon (called OTS), and there is almost no reactivity on the side not in contact with the substrate.
Image courtesy Wang et al, from Nature Chemistry
An image (made with Raman spectroscopy) of a graphene layer on top of a patterned substrate shows the difference in chemical reactivity of the side opposite the substrate. The wide red stripe is an area over a silicon dioxide substrate, making the top surface of the graphene highly reactive. The narrow blue stripe is graphene over a layer of hydrocarbon (called OTS), and there is almost no reactivity on the side not in contact with the substrate.

Image courtesy Wang et al, from Nature Chemistry

Abstract:
When you look at a gift-wrapped present, the basic properties of the wrapping paper — say, its colors and texture — are not generally changed by the nature of the gift inside.

Graphene’s behavior depends on where it sits: New findings show that the material beneath the thin carbon sheets determines how they react chemically and electrically

Cambridge, MA | Posted on August 14th, 2012

But surprising new experiments conducted at MIT show that a one-atom-thick material called graphene, a form of pure carbon whose atoms are joined in a chicken-wire-like lattice, behaves quite differently depending on the nature of material it's wrapped around. When sheets of graphene are placed on substrates made of different materials, fundamental properties — such as how the graphene conducts electricity and how it interacts chemically with other materials — can be drastically different, depending on the nature of the underlying material.

"We were quite surprised" to discover this altered behavior, says Michael Strano, the Charles and Hilda Roddey Professor of Chemical Engineering at MIT, who is the senior author of a paper published this week in the journal Nature Chemistry. "We expected it to behave like graphite" — a well-known form of carbon, used to make the lead in pencils, whose structure is essentially multiple layers of graphene piled on top of each other.

But its behavior turned out to be quite different. "Graphene is very strange," Strano says. Because of its extreme thinness, in practice graphene is almost always placed on top of some other material for support. When that material underneath is silicon dioxide, a standard material used in electronics, the graphene can readily become "functionalized" when exposed to certain chemicals. But when graphene sits on boron nitride, it hardly reacts at all to the same chemicals.

"It's very counterintuitive," Strano says. "You can turn off and turn on graphene's ability to form chemical bonds, based on what's underneath."

The reason, it turns out, is that the material is so thin that the way it reacts is strongly affected by the electrical fields of atoms in the material beneath it. This means that it is possible to create devices with a micropatterned substrate — made up of some silicon dioxide regions and some coated with boron nitride — covered with a layer of graphene whose chemical behavior will then vary according to the hidden patterning. This could enable, for example, the production of microarrays of sensors to detect trace biological or chemical materials.

Qing Hua Wang, an MIT postdoc who is the lead author of the paper, says, "You could get different molecules of a delicate biological marker to interact [with these regions on the graphene surface] without disrupting the biomolecules themselves." Most current fabrication techniques for such patterned surfaces involve heat and reactive solvents that can destroy these sensitive biological molecules.

Ultimately, graphene could even become a protective coating for many materials, Strano says. For example, the one-atom-thick material, when bonded to copper, completely eliminates that metal's tendency to oxidize (which produces the characteristic blue-green surface of copper roofs). "It can completely turn off the corrosion," he says, "almost like magic … with just the whisper of a coating."

To explain why graphene behaves the way it does, "we came up with a new electron-transfer theory" that accounts for the way it is affected by the underlying material, Strano says. "A lot of chemists had missed this," and as a result had been confused by seemingly unpredictable changes in how graphene reacts in different situations. This new understanding can also be used to predict the material's behavior on other substrates, he says.

James Tour, a professor of chemistry and of computer science at Rice University who was not involved in this research, says, "This is the first systematic study of the substrate's effect on graphene's chemical reactivity. This is a very carefully conducted study with convincing results. I predict that it will become a frequently cited publication."

Wang adds that "it's a pretty general result" that can be used to predict the chemical behavior of many different configurations. "We think other groups can take this idea and really develop different things with it," she says. Tour agrees, saying, "The graphene-sensing community will be inspired by this work to explore many more substrates in an effort to optimize graphene reactivity."

As for the MIT team, she says, "the next step is, we're digging into the details of how bilayer graphene reacts. It seems to behave differently" than the single-layer material.

The work was primarily supported by the U.S. Office of Naval Research.

####

For more information, please click here

Copyright © MIT

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Pulses of electrons manipulate nanomagnets and store information: Scientists use electron pulses to create and manipulate nanoscale magnetic excitations that can store data July 21st, 2017

The first light atomic nucleus with a second face July 20th, 2017

Semiliquid chains pulled out of a sea of microparticles July 20th, 2017

Harnessing light to drive chemical reactions July 19th, 2017

Graphene/ Graphite

Scientists produce dialysis membrane made from graphene: Material can filter nanometer-sized molecules at 10 to 100 times the rate of commercial membranes June 29th, 2017

Rice U. chemists create 3-D printed graphene foam June 22nd, 2017

Thought Leaders and Experts Join National Graphene Association Advisory Board June 16th, 2017

Seeing the invisible with a graphene-CMOS integrated device June 6th, 2017

Govt.-Legislation/Regulation/Funding/Policy

The first light atomic nucleus with a second face July 20th, 2017

Semiliquid chains pulled out of a sea of microparticles July 20th, 2017

Here's a tip: Indented cement shows unique properties: Rice University models reveal nanoindentation can benefit crystals in concrete July 20th, 2017

Harnessing light to drive chemical reactions July 19th, 2017

Discoveries

Pulses of electrons manipulate nanomagnets and store information: Scientists use electron pulses to create and manipulate nanoscale magnetic excitations that can store data July 21st, 2017

The first light atomic nucleus with a second face July 20th, 2017

Semiliquid chains pulled out of a sea of microparticles July 20th, 2017

Here's a tip: Indented cement shows unique properties: Rice University models reveal nanoindentation can benefit crystals in concrete July 20th, 2017

Announcements

Pulses of electrons manipulate nanomagnets and store information: Scientists use electron pulses to create and manipulate nanoscale magnetic excitations that can store data July 21st, 2017

Probiotics: Novel biosynthetic tool to develop metallic nanoparticles: This research article by Dr. Nida Akhtar et al has been published in Recent Patents on Drug Delivery & Formulation, Volume 11, Issue 1, 2017 July 20th, 2017

The first light atomic nucleus with a second face July 20th, 2017

Semiliquid chains pulled out of a sea of microparticles July 20th, 2017

Military

Nanoparticles could spur better LEDs, invisibility cloaks July 19th, 2017

'Upconverted' light has a bright future: Rice University professor developing plasmon-powered devices for medicine, security, solar cells July 17th, 2017

Nature-inspired material uses liquid reinforcement: Rice U. nanoengineers create liquid-solid composites using clues from nature July 11th, 2017

Meniscus-assisted technique produces high efficiency perovskite PV films July 7th, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project