Nanotechnology Now







Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > University of Houston researcher develops solar panel coating: Nanoparticle coating makes it easier to keep solar panel clean, which reduces maintenance and operations costs

Abstract:
A University of Houston researcher has developed a nanoparticle coating for solar panels that makes it easier to keep the panels clean, maintaining their efficiency for longer and reducing the maintenance and operations costs.

University of Houston researcher develops solar panel coating: Nanoparticle coating makes it easier to keep solar panel clean, which reduces maintenance and operations costs

Houston, TX | Posted on August 13th, 2012

The patent-pending coating developed by physics professor Seamus "Shay" Curran, director of UH's Institute for NanoEnergy, has successfully undergone testing at the Dublin Institute for Technology and will undergo field trials being conducted by an engineering firm in North Carolina.

Curran said the June testing in Ireland and the field trials being done at Livingston & Haven in Charlotte, N.C., represent significant steps forward in moving the coating and a related technology to the marketplace. A demonstration of the coating was conducted Friday (Aug. 10) at Livingston & Haven.

The Self-Cleaning Nano Hydrophobic (SCNH107TM) layer has been licensed by C-Voltaics from UH. C-Voltaics, a start-up energy company dedicated to the generation of more practical clean energy for use in off-grid and on-grid applications, will oversee marketing of the coating and a "Storm Cell." a transportable energy generator with unique patent-pending designs and engineering aspects that was also developed by Curran at UH.

Solar panels need to have a clean surface to efficiently gather light from the sun, but they are often soiled by dust, pollen, water and other particles. Curran's coating acts as a barrier protection against these pollutants.

The nano-thin coating repels dust, pollen, water and other particles without hindering the solar panel's ability to absorb sunlight. The coating can maintain this ideal hydrophobic surface for years, reducing overall maintenance.

"A dirty solar panel can reduce its power capabilities by up to 30 percent," Curran said. "The coating essentially makes the panel self-cleaning."

While the coating is designed for use on solar panels, Curran believes it could also have widespread applications as an anti-corrosive coating for other materials.

UH is a shareholder in C-Voltaics, which focuses on using technology to alleviate the significant costs of solar energy service and maintenance, which are key issues in solar energy generation and storage.

"This is where you see the university transitioning a technology from the lab to the community and making an economic impact," Curran said.

Curran developed the coating in conjunction with his work on building transportable, off-grid solar-powered generator for residential and commercial use.

Curran's development of the storm cell system stems from his family's experience during Hurricane Ike in September 2008. Curran, his wife and three young sons stocked up and hunkered down as Ike approached the Texas coast. They woke up the next morning after the storm passed with the house intact, but powerless.

"My wife said to me, 'How long have you been working in solar energy? The sun is shining but we don't have any electricity. Why don't you build us a portable solar unit for the next time this happens?'"

The dutiful husband did as he was asked.

The solar-powered Storm Cell is designed to be used much in the same way as a diesel generator, except it's quiet and has no emissions. It consists of a square storage trailer with solar panels attached to retractable arms that can be manually unfurled as needed and then stored inside the trailer.

The unit built by Curran and his team produces 2-to-5 kilowatts and charges a backup battery. That's enough power for an air-conditioning system, some light and a TV. But Livingston & Haven has built an even larger unit that could fully power a 3,000-square-foot house. Curran said there also are a number of commercial uses for the generators such as oil and gas drill sites and farms.

The generator system will be engineered and sold by C-Voltaics and Livingston & Haven.

Curran has been involved in solar energy research for many years and also has been working on improving the efficiency of thin-film solar cells in terms of storing solar energy. Thin-film solar cells are lightweight, durable and easy to use. Researchers are trying to improve their efficiency in terms of storage capability so that they are competitive with silicon cells.

Curran also has created several innovations that relate to the next generation of solar devices used to produce electricity. These devices are all plastic, as opposed to the current devices that use silicon or metal alloys, which take up space and can be costly.

####

For more information, please click here

Contacts:
Laura Tolley

713-743-0778

Copyright © http://www.uh.edu/news-events

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Maximum Precision in 3D Printing: New complete solution makes additive manufacturing standard for microfabrication February 26th, 2015

Real-time observation of bond formation by using femtosecond X-ray liquidography February 26th, 2015

Bruker-Sponsored Sixth AFM BioMed Conference Highlights Increasing Impact of AFM in Biological Applications February 26th, 2015

Graphene shows potential as novel anti-cancer therapeutic strategy: University of Manchester scientists have used graphene to target and neutralise cancer stem cells while not harming other cells February 26th, 2015

Discoveries

Real-time observation of bond formation by using femtosecond X-ray liquidography February 26th, 2015

Graphene shows potential as novel anti-cancer therapeutic strategy: University of Manchester scientists have used graphene to target and neutralise cancer stem cells while not harming other cells February 26th, 2015

Simple, Cost-Efficient Method Used to Determine Toxicants Growing in Pistachio February 26th, 2015

Warming up the world of superconductors: Clusters of aluminum metal atoms become superconductive at surprisingly high temperatures February 25th, 2015

Announcements

Maximum Precision in 3D Printing: New complete solution makes additive manufacturing standard for microfabrication February 26th, 2015

Real-time observation of bond formation by using femtosecond X-ray liquidography February 26th, 2015

Bruker-Sponsored Sixth AFM BioMed Conference Highlights Increasing Impact of AFM in Biological Applications February 26th, 2015

Graphene shows potential as novel anti-cancer therapeutic strategy: University of Manchester scientists have used graphene to target and neutralise cancer stem cells while not harming other cells February 26th, 2015

Patents/IP/Tech Transfer/Licensing

New Paper-like Material Could Boost Electric Vehicle Batteries: Researchers create silicon nanofibers 100 times thinner than human hair for potential applications in batteries for electric cars and personal electronics February 20th, 2015

Nanotech Discoveries Move from Lab to Marketplace with Lintec Deal: Licensing Partnership Brings Together University Technology, New Richardson-Based Facility Directed by Alumni February 9th, 2015

Graphenea granted patent on graphene transfer February 9th, 2015

Toronto-based Environmental Technology Pioneer Green Earth Nano Science Expands in EU February 6th, 2015

Energy

In quest for better lithium-air batteries, chemists boost carbon's stability: Nanoparticle coatings improve stability, cyclability of '3DOm' carbon February 25th, 2015

New nanowire structure absorbs light efficiently: Dual-type nanowire arrays can be used in applications such as LEDs and solar cells February 25th, 2015

Learning by eye: Silicon micro-funnels increase the efficiency of solar cells February 25th, 2015

Magnetic nanoparticles enhance performance of solar cells X-ray study points the way to higher energy yields February 25th, 2015

Research partnerships

European roadmap for graphene science and technology published February 25th, 2015

KIT Increases Commitment in Asia: DAAD Funds Two New Projects: Strategic Partnerships with Chinese Universities and Communi-cation Technologies Network February 22nd, 2015

Increasing Efficiency of Cooling Devices in Oil, Gas Industries February 21st, 2015

Perfect colors, captured with one ultra-thin lens: No need for color correction -- Harvard physicists' flat optics, using nanotechnology, get it right the first time February 19th, 2015

Solar/Photovoltaic

New nanowire structure absorbs light efficiently: Dual-type nanowire arrays can be used in applications such as LEDs and solar cells February 25th, 2015

Learning by eye: Silicon micro-funnels increase the efficiency of solar cells February 25th, 2015

Magnetic nanoparticles enhance performance of solar cells X-ray study points the way to higher energy yields February 25th, 2015

Researchers enable solar cells to use more sunlight February 25th, 2015

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2015 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE