Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > First full colour images at 100,000 dpi resolution

A coloured nanoscale rendition of a standard test image used in image processing experiments - (a) Before the addition of metal in the nanostructures, the image has only grayscale tones as observed under an optical microscope. (b) Colours are observed using the same optical microscope after addition of the metal layers to the nanostrucutres and in specific patterns. (c) Zooming into the image with the same setup, the specular reflection at the corner of the eye is observed showing the refined colour detail that the new method is able to achieve. The region indicated (bottom right) is made up of nanostructures as observed in the electron micrograph.
Copyright : Agency for Science, Technology and Research (A*STAR)
A coloured nanoscale rendition of a standard test image used in image processing experiments - (a) Before the addition of metal in the nanostructures, the image has only grayscale tones as observed under an optical microscope. (b) Colours are observed using the same optical microscope after addition of the metal layers to the nanostrucutres and in specific patterns. (c) Zooming into the image with the same setup, the specular reflection at the corner of the eye is observed showing the refined colour detail that the new method is able to achieve. The region indicated (bottom right) is made up of nanostructures as observed in the electron micrograph.

Copyright : Agency for Science, Technology and Research (A*STAR)

Abstract:
Inspired by colourful stained-glass windows, researchers from Singapore have demonstrated an innovative method for producing sharp, full-spectrum colour images at 100,000 dpi which can be applicable in reflective colour displays, anti-counterfeiting, and high-density optical data recording.

First full colour images at 100,000 dpi resolution

Singapore | Posted on August 13th, 2012

Researchers from A*STAR's Institute of Materials Research and Engineering (IMRE) have developed an innovative method for creating sharp, full-spectrum colour images at 100,000 dots per inch (dpi), using metal-laced nanometer-sized structures, without the need for inks or dyes. In comparison, current industrial printers such as inkjet and laserjet printers can only achieve up to 10,000 dpi while research grade methods are able to dispense dyes for only single colour images. This novel breakthrough allows colouring to be treated not as an inking matter but as a lithographic matter, which can potentially revolutionise the way images are printed and be further developed for use in high-resolution reflective colour displays as well as high density optical data storage.

The inspiration for the research was derived from stained glass, which is traditionally made by mixing tiny fragments of metal into the glass. It was found that nanoparticles from these metal fragments scattered light passing through the glass to give stained glass its colours. Using a similar concept with the help of modern nanotechnology tools, the researchers precisely patterned metal nanostructures, and designed the surface to reflect the light to achieve the colour images.

"The resolution of printed colour images very much depends on the size and spacing between individual ‘nanodots' of colour", explained Dr Karthik Kumar, one of the key researchers involved. "The closer the dots are together and because of their small size, the higher the resolution of the image. With the ability to accurately position these extremely small colour dots, we were able to demonstrate the highest theoretical print colour resolution of 100,000 dpi."

"Instead of using different dyes for different colours, we encoded colour information into the size and position of tiny metal disks. These disks then interacted with light through the phenomenon of plasmon resonances," said Dr Joel Yang, the project leader of the research. "The team built a database of colour that corresponded to a specific nanostructure pattern, size and spacing. These nanostructures were then positioned accordingly. Similar to a child's ‘colouring-by-numbers' image, the sizes and positions of these nanostructures defined the ‘numbers'. But instead of sequentially colouring each area with a different ink, an ultrathin and uniform metal film was deposited across the entire image causing the ‘encoded' colours to appear all at once, almost like magic!" added Dr Joel Yang.

The researchers from IMRE had also collaborated with A*STAR's Institute of High Performance Computing (IHPC) to design the pattern using computer simulation and modelling. Dr Ravi Hegde of IHPC said, "The computer simulations were vital in understanding how the structures gave rise to such rich colours. This knowledge is currently being used to predict the behaviour of more complicated nanostructure arrays."

The researchers are currently working with Exploit Technologies Pte Ltd (ETPL), A*STAR's technology transfer arm, to engage potential collaborators and to explore licensing the technology. The research was published online on 12 August 2012 in Nature Nanotechnology, one of the top scientific journals for materials science and nanotechnology.

Encl. Annex A: A*STAR Corporate Profiles

Journal information

Karthik Kumar, Huigao Duan, Ravi S. Hegde, Samuel C.W. Koh, Jennifer N. Wei and Joel K.W. Yang; "Printing Colour at the Optical Diffraction Limit"; Nature Nanotechnology, DOI: 10.1038/NNANO.2012.128

####

About Agency for Science, Technology and Research (A*STAR)
The Agency for Science, Technology and Research (A*STAR) is the lead agency for fostering world-class scientific research and talent for a vibrant knowledge-based and innovation-driven Singapore. A*STAR oversees 14 biomedical sciences and physical sciences and engineering research institutes, and six consortia & centres, located in Biopolis and Fusionopolis as well as their immediate vicinity.

A*STAR supports Singapore's key economic clusters by providing intellectual, human and industrial capital to its partners in industry. It also supports extramural research in the universities, hospitals, research centres, and with other local and international partners.

For more information about A*STAR, please visit www.a-star.edu.sg.

About the Institute of Materials Research and Engineering (IMRE)

The Institute of Materials Research and Engineering (IMRE) is a research institute of the Agency for Science, Technology and Research (A*STAR). The Institute has capabilities in materials analysis & characterisation, design & growth, patterning & fabrication, and synthesis & integration. We house a range of state-of-the-art equipment for materials research including development, processing and characterisation. IMRE conducts a wide range of research, which includes novel materials for organic solar cells, photovoltaics, printed electronics, catalysis, bio-mimetics, microfluidics, quantum dots, heterostructures, sustainable materials, atom technology, etc. We collaborate actively with other research institutes, universities, public bodies, and a wide spectrum of industrial companies, both globally and locally.

For more information about IMRE, please visit www.imre.a-star.edu.sg

For more information, please click here

Contacts:
Mr Eugene Low
Manager, Corporate Communications
for Institute of Materials Research and Engineering (IMRE)
3, Research Link
Singapore 117602
DID: +65 6874 8491
Mobile: +65 9230 9235


For technical enquiries, please contact:

Dr Karthik Kumar
Scientist I
Institute of Materials Research and Engineering (IMRE)
3, Research Link
Singapore 117602
DID: +65 6872 7743


Dr Joel Yang
Scientist II
Institute of Materials Research and Engineering (IMRE)
3, Research Link
Singapore 117602
DID: +65 6874 8385

Copyright © Agency for Science, Technology and Research (A*STAR)

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Institute of Materials Research and Engineering (IMRE):

Agency for Science, Technology and Research (A*STAR):

Related News Press

News and information

GLOBALFOUNDRIES and Chengdu Partner to Expand FD-SOI Ecosystem in China: More than $100M investment to establish a center of excellence for FDXTM FD-SOI design May 23rd, 2017

Zap! Graphene is bad news for bacteria: Rice, Ben-Gurion universities show laser-induced graphene kills bacteria, resists biofouling May 22nd, 2017

Leti Will Demo World’s-first WVGA 10-µm Pitch GaN Microdisplays for Augmented Reality Video at Display Week in Los Angles: Invited Paper also Will Present Leti’s Success with New Augmented Reality Technology That Reduces Pixel Pitch to Less than 5 Microns May 22nd, 2017

Graphene-nanotube hybrid boosts lithium metal batteries: Rice University prototypes store 3 times the energy of lithium-ion batteries May 19th, 2017

Plasmon-powered upconversion nanocrystals for enhanced bioimaging and polarized emission: Plasmonic gold nanorods brighten lanthanide-doped upconversion superdots for improved multiphoton bioimaging contrast and enable polarization-selective nonlinear emissions for novel nanoscal May 19th, 2017

Display technology/LEDs/SS Lighting/OLEDs

Leti Will Demo World’s-first WVGA 10-µm Pitch GaN Microdisplays for Augmented Reality Video at Display Week in Los Angles: Invited Paper also Will Present Leti’s Success with New Augmented Reality Technology That Reduces Pixel Pitch to Less than 5 Microns May 22nd, 2017

CCNY physicists demonstrate photonic hypercrystals for control of light-matter interaction May 5th, 2017

Law enforcement/Anti-Counterfeiting/Security/Loss prevention

Leti Announces Backside Shield that Protects Microchips from Physical Attacks March 8th, 2017

NUS engineers develop low-cost, flexible terahertz radiation source for fast, non-invasive screening: Novel invention presents promising applications in spectroscopy, safety surveillance, cancer diagnosis, imaging and communication February 1st, 2017

Strength of hair inspires new materials for body armor January 18th, 2017

Dressing a metal in various colors: DGIST research developed a technology to coat metal with several nanometers of semiconducting materials January 17th, 2017

Memory Technology

Geoffrey Beach: Drawn to explore magnetism: Materials researcher is working on the magnetic memory of the future April 25th, 2017

New ultrafast flexible and transparent memory devices could herald new era of electronics April 1st, 2017

Information storage with a nanoscale twist: Discovery of a novel rotational force inside magnetic vortices makes it easier to design ultrahigh capacity disk drives March 28th, 2017

Smart multi-layered magnetic material acts as an electric switch: New study reveals characteristic of islands of magnetic metals between vacuum gaps, displaying tunnelling electric current March 1st, 2017

Discoveries

Zap! Graphene is bad news for bacteria: Rice, Ben-Gurion universities show laser-induced graphene kills bacteria, resists biofouling May 22nd, 2017

Sensors detect disease markers in breath May 19th, 2017

Graphene-nanotube hybrid boosts lithium metal batteries: Rice University prototypes store 3 times the energy of lithium-ion batteries May 19th, 2017

Plasmon-powered upconversion nanocrystals for enhanced bioimaging and polarized emission: Plasmonic gold nanorods brighten lanthanide-doped upconversion superdots for improved multiphoton bioimaging contrast and enable polarization-selective nonlinear emissions for novel nanoscal May 19th, 2017

Announcements

GLOBALFOUNDRIES and Chengdu Partner to Expand FD-SOI Ecosystem in China: More than $100M investment to establish a center of excellence for FDXTM FD-SOI design May 23rd, 2017

Zap! Graphene is bad news for bacteria: Rice, Ben-Gurion universities show laser-induced graphene kills bacteria, resists biofouling May 22nd, 2017

Leti Will Demo World’s-first WVGA 10-µm Pitch GaN Microdisplays for Augmented Reality Video at Display Week in Los Angles: Invited Paper also Will Present Leti’s Success with New Augmented Reality Technology That Reduces Pixel Pitch to Less than 5 Microns May 22nd, 2017

Graphene-nanotube hybrid boosts lithium metal batteries: Rice University prototypes store 3 times the energy of lithium-ion batteries May 19th, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project