Nanotechnology Now







Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Scientists' gold discovery sheds light on catalysis

Abstract:
A physicist at the University of York has played a key role in international research which has made an important advance in establishing the catalytic properties of gold at a nano level.

Scientists' gold discovery sheds light on catalysis

Heslington, UK | Posted on August 12th, 2012

Dr Keith McKenna was part of a research team which discovered that the catalytic activity of nanoporous gold (NPG) originates from high concentrations of surface defects present within its complex three-dimensional structure.

The research, which is published online in Nature Materials, has the potential to assist in the development of more efficient and durable catalytic converters and fuel cells because nanoporous gold is a catalytic agent for oxidising carbon monoxide.

Bulk gold - the sort used in watches and jewellery - is inert but nanoporous gold possesses high catalytic activity towards oxidation reactions. The research team, which also included scientists from Japan, China and the USA, discovered, that this activity can be identified with surface defects found within its complex nanoporous structure. While nanoporous gold exhibits comparable activity to nanoparticulate gold, it is considerably more stable making it attractive for the development of catalysts with high performance and long lifetimes.

They created NPG by immersing an alloy of gold and silver in a chemical solution which removed the latter metal to create a porous atomic structure. Then, using transmission electron microscopy, they were able to detect evidence that the surface defects on the NPG were active sites for catalysis and the residual silver made them substantially more stable.

Dr McKenna, of the Department of Physics at the University of York, said: "Unlike gold nanoparticles, dealloyed NPG is unsupported so we are able to monitor its catalytic activity more accurately. We found that there are many surface defects present within the complex structure of NPG which are responsible for the high catalytic activity.

"This work has given us a greater understanding of the catalytic mechanisms of NPG which will, in turn, shed light on the mechanisms of gold catalysis more broadly."

The research also involved the WPI Advanced Institute for Materials Research, Tohoku University, Japan; Ectopia Science Institute, Nagoya University, Japan; Department of Materials Science and Engineering, Johns Hopkins University, USA, and School of Materials Science and Engineering, Shanghai Jiao Tong University, China.

The research was sponsored by JST-PRESTO, JST-CREST and the Sekisui research fund.

The paper ‘Atomic origins of the high catalytic activity of nanoporous gold' is published online in Nature Materials.

####

About University of York
The University of York was founded in 1963 with 200 students. Since then, it has expanded to 10,000 students and has over 30 academic departments and research centres.

Academic excellence
From its inception, the University has concentrated on strong viable departments and teaching and research of the highest quality. The quality of York's teaching has received many accolades. York and Cambridge top the teaching league with the highest scores in official teaching assessments.

For more information, please click here

Contacts:
David Garner
00 44 (1) 904 322153

Copyright © AlphaGalileo

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Untangling DNA with a droplet of water, a pipet and a polymer: With the 'rolling droplet technique,' a DNA-injected water droplet rolls like a ball over a platelet, sticking the DNA to the plate surface February 27th, 2015

Rice's Stephan Link honored for nanoscience research: The Welch Foundation honors ‘rising star’ with $100,000 Hackerman Award February 26th, 2015

Indefinite Life Extension Activists Organize Online Demonstration February 26th, 2015

Renishaw and Bruker team up for a workshop on TERS and co-localised AFM Raman February 26th, 2015

Physics

Real-time observation of bond formation by using femtosecond X-ray liquidography February 26th, 2015

Warming up the world of superconductors: Clusters of aluminum metal atoms become superconductive at surprisingly high temperatures February 25th, 2015

Quantum many-body systems on the way back to equilibrium: Advances in experimental and theoretical physics enable a deeper understanding of the dynamics and properties of quantum many-body systems February 25th, 2015

Simulating superconducting materials with ultracold atoms: Rice physicists build superconductor analog, observe antiferromagnetic order February 23rd, 2015

Bar-Ilan U. researcher first to observe 'god particle' analogue in superconductors: Introduces 'tabletop' technique for examining the standard model of physics' most celebrated missing link February 19th, 2015

Chemistry

Chromium-Centered Cycloparaphenylene Rings as New Tools for Making Functionalized Nanocarbons February 24th, 2015

Stretch and relax! -- Losing 1 electron switches magnetism on in dichromium February 23rd, 2015

Govt.-Legislation/Regulation/Funding/Policy

Warming up the world of superconductors: Clusters of aluminum metal atoms become superconductive at surprisingly high temperatures February 25th, 2015

SUNY Poly CNSE Researchers and Corporate Partners to Present Forty Papers at Globally Recognized Lithography Conference: SUNY Poly CNSE Research Group Awarded Both ‘Best Research Paper’ and ‘Best Research Poster’ at SPIE Advanced Lithography 2015 forum February 25th, 2015

European roadmap for graphene science and technology published February 25th, 2015

Cutting-edge technology optimizes cancer therapy with nanomedicine drug combinations: UCLA bioengineers develop platform that offers personalized approach to treatment February 24th, 2015

Discoveries

Untangling DNA with a droplet of water, a pipet and a polymer: With the 'rolling droplet technique,' a DNA-injected water droplet rolls like a ball over a platelet, sticking the DNA to the plate surface February 27th, 2015

Real-time observation of bond formation by using femtosecond X-ray liquidography February 26th, 2015

Graphene shows potential as novel anti-cancer therapeutic strategy: University of Manchester scientists have used graphene to target and neutralise cancer stem cells while not harming other cells February 26th, 2015

Simple, Cost-Efficient Method Used to Determine Toxicants Growing in Pistachio February 26th, 2015

Announcements

Untangling DNA with a droplet of water, a pipet and a polymer: With the 'rolling droplet technique,' a DNA-injected water droplet rolls like a ball over a platelet, sticking the DNA to the plate surface February 27th, 2015

Real-time observation of bond formation by using femtosecond X-ray liquidography February 26th, 2015

Bruker-Sponsored Sixth AFM BioMed Conference Highlights Increasing Impact of AFM in Biological Applications February 26th, 2015

Graphene shows potential as novel anti-cancer therapeutic strategy: University of Manchester scientists have used graphene to target and neutralise cancer stem cells while not harming other cells February 26th, 2015

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2015 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE