Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > A New Playground for Particle Design

Researchers from the University of Jena (Germany) designed glycopolymeric materials with tailored properties to independently study the parameters that impact cellular uptake.
Researchers from the University of Jena (Germany) designed glycopolymeric materials with tailored properties to independently study the parameters that impact cellular uptake.

Abstract:
Synthetic polymers offer the possibility to introduce biologically active moieties and to design tailor-made macromolecules with well-defined architectures and properties. The design of glycopolymeric materials with tailored properties has become a very important topic of interest in current chemistry, biology, and medicine.

A New Playground for Particle Design

Germany | Posted on August 10th, 2012

The main reason behind this significance lies within their structure. A glycopolymer, by definition, consists of a synthetic polymeric backbone with covalently-linked, pendant carbohydrate moieties. The backbone may be composed of various monomeric units, in different arrangements. As a consequence, it provides the possibility to adjust the physical properties, such as water solubility of the final material.

The second building block of a glycopolymer consists of pendant sugar moieties which act as ligands for a broad spectrum of protein receptors that play an important role in different cell-surface interactions. Therefore, the structure of synthetic glycopolymers allows the precise modification of their material and biological features for special biomedical purposes.

Now, the research group around Ulrich Schubert (University of Jena) have demonstrated that poly(pentafluorostyrene)-based glycopolymers also possess the above-mentioned properties. By the introduction of hydrophobic polystyrene block into the backbone they can modify the water solubility of the system and obtain amphiphilic glycopolymers. These materials do not dissolve in aqueous environments. Under appropriate conditions they form nanoparticles with carbohydrates on the surface. By the introduction of glucose or galactose the recognition and uptake of these polymers by liver cancer cells is modified.

Fluorescence microscopy and flow cytometry show that nanoparticles are taken up by these cells to a higher degree than respective water soluble polymers, and that internalization of galactosylated materials is enhanced. These glycopolymers can find a multitude of potential applications in, for example, liver tumor-targeted chemotherapy, imaging, and as extracellular matrices for hepatocytes.

####

For more information, please click here

Copyright © Wiley-VCH Materials Science Journals

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Link to the original paper on Wiley Online Library:

Related News Press

News and information

Leica Microsystems Presents Universal Hybrid Detector for Single Molecule Detection and Imaging at SfN and ASCB: Leica HyD SMD - the Optimal Detector for Precise and Reliable SMD data November 20th, 2014

Silver Nanoparticles Produced in Iran from Forest Plants Extract November 20th, 2014

Nano Sorbents Able to Remove Pollutions Caused by Oil Derivatives November 20th, 2014

NRL Scientists Discover Novel Metamaterial Properties within Hexagonal Boron Nitride November 20th, 2014

Eight19 secures £1m funding: Investment to develop production technology, and expand commercial activities for organic photovoltaics November 19th, 2014

Chemistry

Silver Nanoparticles Produced in Iran from Forest Plants Extract November 20th, 2014

Nanomedicine

Silver Nanoparticles Produced in Iran from Forest Plants Extract November 20th, 2014

Tokyo Institute of Technology research: Protein-engineered cages aid studies of cell functions November 19th, 2014

A novel method for identifying the body’s ‘noisiest’ networks November 19th, 2014

Arrowhead Files for Regulatory Permission to Begin Phase 1 Trial of RNAi Therapeutic ARC-AAT November 18th, 2014

Discoveries

Silver Nanoparticles Produced in Iran from Forest Plants Extract November 20th, 2014

Nano Sorbents Able to Remove Pollutions Caused by Oil Derivatives November 20th, 2014

NRL Scientists Discover Novel Metamaterial Properties within Hexagonal Boron Nitride November 20th, 2014

Tokyo Institute of Technology research: Protein-engineered cages aid studies of cell functions November 19th, 2014

Announcements

Leica Microsystems Presents Universal Hybrid Detector for Single Molecule Detection and Imaging at SfN and ASCB: Leica HyD SMD - the Optimal Detector for Precise and Reliable SMD data November 20th, 2014

Silver Nanoparticles Produced in Iran from Forest Plants Extract November 20th, 2014

Nano Sorbents Able to Remove Pollutions Caused by Oil Derivatives November 20th, 2014

NRL Scientists Discover Novel Metamaterial Properties within Hexagonal Boron Nitride November 20th, 2014

Nanobiotechnology

Tokyo Institute of Technology research: Protein-engineered cages aid studies of cell functions November 19th, 2014

A novel method for identifying the body’s ‘noisiest’ networks November 19th, 2014

Implementation of DNA Chains in Designing Nanospin Pieces November 9th, 2014

'Swiss cheese' membrane with adjustable holes November 2nd, 2014

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More












ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE