Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > A New Playground for Particle Design

Researchers from the University of Jena (Germany) designed glycopolymeric materials with tailored properties to independently study the parameters that impact cellular uptake.
Researchers from the University of Jena (Germany) designed glycopolymeric materials with tailored properties to independently study the parameters that impact cellular uptake.

Abstract:
Synthetic polymers offer the possibility to introduce biologically active moieties and to design tailor-made macromolecules with well-defined architectures and properties. The design of glycopolymeric materials with tailored properties has become a very important topic of interest in current chemistry, biology, and medicine.

A New Playground for Particle Design

Germany | Posted on August 10th, 2012

The main reason behind this significance lies within their structure. A glycopolymer, by definition, consists of a synthetic polymeric backbone with covalently-linked, pendant carbohydrate moieties. The backbone may be composed of various monomeric units, in different arrangements. As a consequence, it provides the possibility to adjust the physical properties, such as water solubility of the final material.

The second building block of a glycopolymer consists of pendant sugar moieties which act as ligands for a broad spectrum of protein receptors that play an important role in different cell-surface interactions. Therefore, the structure of synthetic glycopolymers allows the precise modification of their material and biological features for special biomedical purposes.

Now, the research group around Ulrich Schubert (University of Jena) have demonstrated that poly(pentafluorostyrene)-based glycopolymers also possess the above-mentioned properties. By the introduction of hydrophobic polystyrene block into the backbone they can modify the water solubility of the system and obtain amphiphilic glycopolymers. These materials do not dissolve in aqueous environments. Under appropriate conditions they form nanoparticles with carbohydrates on the surface. By the introduction of glucose or galactose the recognition and uptake of these polymers by liver cancer cells is modified.

Fluorescence microscopy and flow cytometry show that nanoparticles are taken up by these cells to a higher degree than respective water soluble polymers, and that internalization of galactosylated materials is enhanced. These glycopolymers can find a multitude of potential applications in, for example, liver tumor-targeted chemotherapy, imaging, and as extracellular matrices for hepatocytes.

####

For more information, please click here

Copyright © Wiley-VCH Materials Science Journals

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Link to the original paper on Wiley Online Library:

Related News Press

News and information

Forces of nature: Interview with microscopy innovators Gerd Binnig and Christoph Gerber August 26th, 2016

A promising route to the scalable production of highly crystalline graphene films August 26th, 2016

Graphene under pressure August 26th, 2016

Stretchy supercapacitors power wearable electronics August 25th, 2016

Chemistry

A new way to display the 3-D structure of molecules: Metal-organic frameworks provide a new platform for solving the structure of hard-to-study samples August 21st, 2016

Researchers watch catalysts at work August 19th, 2016

Pokhara, the second largest city of Nepal, to host its first ever International Meeting on Material Sciences and Engineering August 15th, 2016

'Liquid fingerprinting' technique instantly identifies unknown liquids: Ability to instantly identify unknown liquids in the field could aid first responders, improve plant safety August 4th, 2016

Nanomedicine

Nanofiber scaffolds demonstrate new features in the behavior of stem and cancer cells August 25th, 2016

Johns Hopkins scientists track metabolic pathways to find drug combination for pancreatic cancer August 25th, 2016

50 years after the release of the film 'Fantastic Voyage,' science upstages fiction: Science upstages fiction with nanorobotic agents designed to travel in the human body to treat cancer August 25th, 2016

Tunneling nanotubes between neurons enable the spread of Parkinson's disease via lysosomes August 24th, 2016

Discoveries

A promising route to the scalable production of highly crystalline graphene films August 26th, 2016

Graphene under pressure August 26th, 2016

Johns Hopkins scientists track metabolic pathways to find drug combination for pancreatic cancer August 25th, 2016

New electrical energy storage material shows its power: Nanomaterial combines attributes of both batteries and supercapacitors August 25th, 2016

Announcements

Forces of nature: Interview with microscopy innovators Gerd Binnig and Christoph Gerber August 26th, 2016

A promising route to the scalable production of highly crystalline graphene films August 26th, 2016

Graphene under pressure August 26th, 2016

New electrical energy storage material shows its power: Nanomaterial combines attributes of both batteries and supercapacitors August 25th, 2016

Nanobiotechnology

Analog DNA circuit does math in a test tube: DNA computers could one day be programmed to diagnose and treat disease August 25th, 2016

Nanofiber scaffolds demonstrate new features in the behavior of stem and cancer cells August 25th, 2016

Johns Hopkins scientists track metabolic pathways to find drug combination for pancreatic cancer August 25th, 2016

50 years after the release of the film 'Fantastic Voyage,' science upstages fiction: Science upstages fiction with nanorobotic agents designed to travel in the human body to treat cancer August 25th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic