Nanotechnology Now





Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Quick and Safe Quantum Dots

Researchers at Rutgers University have developed a method to generate an entire library of safe quantum dots quickly and efficiently.
Researchers at Rutgers University have developed a method to generate an entire library of safe quantum dots quickly and efficiently.

Abstract:
Tracking and viewing molecular interactions inside a cell with great detail is invaluable for understanding how organisms operate and to the future of medicine. Quantum dots (QDs), semiconductor crystals on the nanoscale with confined electron excitations, have almost all the right properties for this task. They have high absorption constants, are small enough to sneak inside cells, and can be tailored to release at different wavelengths. Additionally, they can carry therapeutic proteins on their coating. However, they are toxic. The current leading QDs are composed of hazardous elements like cadmium, selenium, and tellurium. Recently, advances have made more biocompatible crystals out of safer materials, such as zinc, silver, and indium. Yet, these crystals have long reaction times and are difficult to customize and produce en masse.

Quick and Safe Quantum Dots

Germany | Posted on August 10th, 2012

Researchers at Rutgers University have developed a method to generate an entire library of safe QDs quickly and efficiently. They used the molecular structure ZnS-AgInS2 (ZAIS), a version of the previous non-toxic crystals. They placed a powdery bulk chemical precursor into a vial and blasted it with 20 kHz of ultrasound for five minutes. The sound waves broke up the powder into QDs with a uniform size of about 12nm. The crystals also had a property unique among other types of dots. Instead of size controlling the color of emission, the ratio of elements in the compound did. The more zinc or silver added to the precursor, the more blue-shifted the resulting QDs were. By tuning the stoichiometry, the researchers synthesized QD samples across the entire visible spectrum.

They then tested to see how the dots impacted a biological environment. The ZAIS dots were compared against the standard and toxic cadmium selenide (CdSe) QDs. Both were placed with brain tumor cell, marrow stem cell, and mouse fibroblast samples to see how each fared in their presence. In all trials, the ZAIS QDs had negligible toxic effects, even when in high concentration or oxidized by four hours of UV exposure. In contrast, the CdSe QDs failed the tests miserably, practically killing off half the sample at high concentration. Moreover, the ZAIS dots were extremely stable, lasting for two months in storage without losing any of their photoluminescence.

Lastly, the researchers tested how well these QDs could carry out a multifunctional purpose. They mutated a sample of the tumor neurons to create a fluorescent protein that made them glow green. They then attached the silencing RNA that targets and destroys the protein-creating gene to the QD surface. The researchers watched the dots enter the cells, as they were easy to track due to their glow. After three days, about 80% of the green fluorescence disappeared.

These results open up the possibility of safely using QDs in humans. Furthermore, different colored crystals can simultaneously carry out an array of therapeutic and imaging functions, depending on their surface polymers. The researchers believe that their ultrasound technique can be used to rapidly create and characterize the toxicity of other nanoparticles as well.

####

For more information, please click here

Copyright © Wiley-VCH Materials Science Journals

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Link to the original paper on Wiley Online Library:

Related News Press

News and information

Conversion of Greenhouse Gases to Syngas in Presence of Nanocatalysts in Iran May 22nd, 2015

New Antibacterial Wound Dressing in Iran Can Display Replacement Time May 22nd, 2015

Haydale Named Lead Sponsor for Cambridge Graphene Festival May 22nd, 2015

Simulations predict flat liquid May 21st, 2015

Researchers develop new way to manufacture nanofibers May 21st, 2015

Imaging

Aspen Aerogels to Present at the Cowen and Company Technology, Media & Telecom Conference May 21st, 2015

Samtec, Global Provider of Interconnect Systems, Joins IRT Nanoelec Silicon Photonics Program May 21st, 2015

Nanomedicine

New Antibacterial Wound Dressing in Iran Can Display Replacement Time May 22nd, 2015

Researchers develop new way to manufacture nanofibers May 21st, 2015

Effective Nano-Micelles Designed in Iran to Treat Cancer May 20th, 2015

Nature inspires first artificial molecular pump: Simple design mimics pumping mechanism of life-sustaining proteins found in living cells May 19th, 2015

Discoveries

Conversion of Greenhouse Gases to Syngas in Presence of Nanocatalysts in Iran May 22nd, 2015

New Antibacterial Wound Dressing in Iran Can Display Replacement Time May 22nd, 2015

Nanotherapy effective in mice with multiple myeloma May 21st, 2015

Turn that defect upside down: Twin boundaries in lithium-ion batteries May 21st, 2015

Announcements

Conversion of Greenhouse Gases to Syngas in Presence of Nanocatalysts in Iran May 22nd, 2015

New Antibacterial Wound Dressing in Iran Can Display Replacement Time May 22nd, 2015

Haydale Named Lead Sponsor for Cambridge Graphene Festival May 22nd, 2015

INSIDDE: Uncovering the real history of art using a graphene scanner May 21st, 2015

Safety-Nanoparticles/Risk management

Statement by QD Vision regarding European Parliament’s Vote on Cadmium-Based Quantum Dots May 20th, 2015

SUNY Poly CNSE and NIOSH Launch Federal Nano Health and Safety Consortium: May 20th, 2015

Cotton fibres instead of carbon nanotubes May 9th, 2015

Nanoparticles in consumer products can significantly alter normal gut microbiome May 4th, 2015

Quantum Dots/Rods

Statement by QD Vision regarding European Parliament’s Vote on Cadmium-Based Quantum Dots May 20th, 2015

Toward 'green' paper-thin, flexible electronics May 20th, 2015

Electricity generating nano-wizards: Quantum dots are an ideal nanolab to study the means to turning heat into electricity May 18th, 2015

QD Vision to Showcase Quantum Dot “Firsts” at Display Week 2015: Executives will present, demo current and future quantum dot technology May 13th, 2015

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project