Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Quick and Safe Quantum Dots

Researchers at Rutgers University have developed a method to generate an entire library of safe quantum dots quickly and efficiently.
Researchers at Rutgers University have developed a method to generate an entire library of safe quantum dots quickly and efficiently.

Abstract:
Tracking and viewing molecular interactions inside a cell with great detail is invaluable for understanding how organisms operate and to the future of medicine. Quantum dots (QDs), semiconductor crystals on the nanoscale with confined electron excitations, have almost all the right properties for this task. They have high absorption constants, are small enough to sneak inside cells, and can be tailored to release at different wavelengths. Additionally, they can carry therapeutic proteins on their coating. However, they are toxic. The current leading QDs are composed of hazardous elements like cadmium, selenium, and tellurium. Recently, advances have made more biocompatible crystals out of safer materials, such as zinc, silver, and indium. Yet, these crystals have long reaction times and are difficult to customize and produce en masse.

Quick and Safe Quantum Dots

Germany | Posted on August 10th, 2012

Researchers at Rutgers University have developed a method to generate an entire library of safe QDs quickly and efficiently. They used the molecular structure ZnS-AgInS2 (ZAIS), a version of the previous non-toxic crystals. They placed a powdery bulk chemical precursor into a vial and blasted it with 20 kHz of ultrasound for five minutes. The sound waves broke up the powder into QDs with a uniform size of about 12nm. The crystals also had a property unique among other types of dots. Instead of size controlling the color of emission, the ratio of elements in the compound did. The more zinc or silver added to the precursor, the more blue-shifted the resulting QDs were. By tuning the stoichiometry, the researchers synthesized QD samples across the entire visible spectrum.

They then tested to see how the dots impacted a biological environment. The ZAIS dots were compared against the standard and toxic cadmium selenide (CdSe) QDs. Both were placed with brain tumor cell, marrow stem cell, and mouse fibroblast samples to see how each fared in their presence. In all trials, the ZAIS QDs had negligible toxic effects, even when in high concentration or oxidized by four hours of UV exposure. In contrast, the CdSe QDs failed the tests miserably, practically killing off half the sample at high concentration. Moreover, the ZAIS dots were extremely stable, lasting for two months in storage without losing any of their photoluminescence.

Lastly, the researchers tested how well these QDs could carry out a multifunctional purpose. They mutated a sample of the tumor neurons to create a fluorescent protein that made them glow green. They then attached the silencing RNA that targets and destroys the protein-creating gene to the QD surface. The researchers watched the dots enter the cells, as they were easy to track due to their glow. After three days, about 80% of the green fluorescence disappeared.

These results open up the possibility of safely using QDs in humans. Furthermore, different colored crystals can simultaneously carry out an array of therapeutic and imaging functions, depending on their surface polymers. The researchers believe that their ultrasound technique can be used to rapidly create and characterize the toxicity of other nanoparticles as well.

####

For more information, please click here

Copyright © Wiley-VCH Materials Science Journals

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Link to the original paper on Wiley Online Library:

Related News Press

News and information

Physicists develop new recipes for design of fast single-photon gun Physicists develop high-speed single-photon sources for quantum computers of the future September 21st, 2017

GLOBALFOUNDRIES Unveils Vision and Roadmap for Next-Generation 5G Applications: Technology platforms are uniquely positioned to enable a new era of ‘connected intelligence’ with the transition to 5G September 20th, 2017

GLOBALFOUNDRIES Delivers Custom 14nm FinFET Technology for IBM Systems: Jointly developed 14HP process is world’s only technology that leverages both FinFET and SOI September 20th, 2017

GLOBALFOUNDRIES Introduces New 12nm FinFET Technology for High-Performance Applications September 20th, 2017

Imaging

Graphene based terahertz absorbers: Printable graphene inks enable ultrafast lasers in the terahertz range September 13th, 2017

Chemical hot spots: Scanning tunneling microscopy measurements identify active sites on catalyst surfaces September 7th, 2017

Phenom-World selects Deben to supply a tensile stage as an accessory to their range of desktop SEMs August 29th, 2017

What the world's tiniest 'monster truck' reveals August 24th, 2017

Nanomedicine

Do titanium dioxide particles from orthopedic implants disrupt bone repair? September 16th, 2017

Arrowhead Hosts Investor & Analyst R&D Day to Introduce TRiM(TM) Platform and Lead RNAi-based Drug Candidates September 14th, 2017

Graphene based terahertz absorbers: Printable graphene inks enable ultrafast lasers in the terahertz range September 13th, 2017

Applications for the nanomedTAB are open until September 18th, 2017 September 13th, 2017

Discoveries

Physicists develop new recipes for design of fast single-photon gun Physicists develop high-speed single-photon sources for quantum computers of the future September 21st, 2017

Copper catalyst yields high efficiency CO2-to-fuels conversion: Berkeley Lab scientists discover critical role of nanoparticle transformation September 20th, 2017

Solar-to-fuel system recycles CO2 to make ethanol and ethylene: Berkeley Lab advance is first demonstration of efficient, light-powered production of fuel via artificial photosynthesis September 19th, 2017

A new approach to ultrafast light pulses: Unusual fluorescent materials could be used for rapid light-based communications systems September 19th, 2017

Announcements

Physicists develop new recipes for design of fast single-photon gun Physicists develop high-speed single-photon sources for quantum computers of the future September 21st, 2017

GLOBALFOUNDRIES Delivers Custom 14nm FinFET Technology for IBM Systems: Jointly developed 14HP process is world’s only technology that leverages both FinFET and SOI September 20th, 2017

GLOBALFOUNDRIES Introduces New 12nm FinFET Technology for High-Performance Applications September 20th, 2017

Copper catalyst yields high efficiency CO2-to-fuels conversion: Berkeley Lab scientists discover critical role of nanoparticle transformation September 20th, 2017

Safety-Nanoparticles/Risk management

Do titanium dioxide particles from orthopedic implants disrupt bone repair? September 16th, 2017

Tests show no nanotubes released during utilisation of nanoaugmented materials June 9th, 2017

NanoMONITOR shares its latest developments concerning the NanoMONITOR Software and the Monitoring stations April 21st, 2017

NIST updates 'sweet' 1950s separation method to clean nanoparticles from organisms January 27th, 2017

Quantum Dots/Rods

New approach on research and design for CQD catalysts in World Scientific NANO August 2nd, 2017

Coupling a nano-trumpet with a quantum dot enables precise position determination July 14th, 2017

Graphene and quantum dots put in motion a CMOS-integrated camera that can see the invisible May 29th, 2017

The brighter side of twisted polymers: Conjugated polymers designed with a twist produce tiny, brightly fluorescent particles with broad applications May 16th, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project