Nanotechnology Now

Our NanoNews Digest Sponsors


Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Quick and Safe Quantum Dots

Researchers at Rutgers University have developed a method to generate an entire library of safe quantum dots quickly and efficiently.
Researchers at Rutgers University have developed a method to generate an entire library of safe quantum dots quickly and efficiently.

Abstract:
Tracking and viewing molecular interactions inside a cell with great detail is invaluable for understanding how organisms operate and to the future of medicine. Quantum dots (QDs), semiconductor crystals on the nanoscale with confined electron excitations, have almost all the right properties for this task. They have high absorption constants, are small enough to sneak inside cells, and can be tailored to release at different wavelengths. Additionally, they can carry therapeutic proteins on their coating. However, they are toxic. The current leading QDs are composed of hazardous elements like cadmium, selenium, and tellurium. Recently, advances have made more biocompatible crystals out of safer materials, such as zinc, silver, and indium. Yet, these crystals have long reaction times and are difficult to customize and produce en masse.

Quick and Safe Quantum Dots

Germany | Posted on August 10th, 2012

Researchers at Rutgers University have developed a method to generate an entire library of safe QDs quickly and efficiently. They used the molecular structure ZnS-AgInS2 (ZAIS), a version of the previous non-toxic crystals. They placed a powdery bulk chemical precursor into a vial and blasted it with 20 kHz of ultrasound for five minutes. The sound waves broke up the powder into QDs with a uniform size of about 12nm. The crystals also had a property unique among other types of dots. Instead of size controlling the color of emission, the ratio of elements in the compound did. The more zinc or silver added to the precursor, the more blue-shifted the resulting QDs were. By tuning the stoichiometry, the researchers synthesized QD samples across the entire visible spectrum.

They then tested to see how the dots impacted a biological environment. The ZAIS dots were compared against the standard and toxic cadmium selenide (CdSe) QDs. Both were placed with brain tumor cell, marrow stem cell, and mouse fibroblast samples to see how each fared in their presence. In all trials, the ZAIS QDs had negligible toxic effects, even when in high concentration or oxidized by four hours of UV exposure. In contrast, the CdSe QDs failed the tests miserably, practically killing off half the sample at high concentration. Moreover, the ZAIS dots were extremely stable, lasting for two months in storage without losing any of their photoluminescence.

Lastly, the researchers tested how well these QDs could carry out a multifunctional purpose. They mutated a sample of the tumor neurons to create a fluorescent protein that made them glow green. They then attached the silencing RNA that targets and destroys the protein-creating gene to the QD surface. The researchers watched the dots enter the cells, as they were easy to track due to their glow. After three days, about 80% of the green fluorescence disappeared.

These results open up the possibility of safely using QDs in humans. Furthermore, different colored crystals can simultaneously carry out an array of therapeutic and imaging functions, depending on their surface polymers. The researchers believe that their ultrasound technique can be used to rapidly create and characterize the toxicity of other nanoparticles as well.

####

For more information, please click here

Copyright © Wiley-VCH Materials Science Journals

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Link to the original paper on Wiley Online Library:

Related News Press

News and information

Simple attraction: Researchers control protein release from nanoparticles without encapsulation: U of T Engineering discovery stands to improve reliability and fabrication process for treatments to conditions such as spinal cord damage and stroke May 28th, 2016

Scientists illuminate a hidden regulator in gene transcription: New super-resolution technique visualizes important role of short-lived enzyme clusters May 27th, 2016

Doubling down on Schrödinger's cat May 27th, 2016

Deep Space Industries and SFL selected to provide satellites for HawkEye 360’s Pathfinder mission: The privately-funded space-based global wireless signal monitoring system will be developed by Deep Space Industries and UTIAS Space Flight Laboratory May 26th, 2016

The next generation of carbon monoxide nanosensors May 26th, 2016

Imaging

Scientists illuminate a hidden regulator in gene transcription: New super-resolution technique visualizes important role of short-lived enzyme clusters May 27th, 2016

Nanomedicine

Simple attraction: Researchers control protein release from nanoparticles without encapsulation: U of T Engineering discovery stands to improve reliability and fabrication process for treatments to conditions such as spinal cord damage and stroke May 28th, 2016

Scientists illuminate a hidden regulator in gene transcription: New super-resolution technique visualizes important role of short-lived enzyme clusters May 27th, 2016

Supercrystals with new architecture can enhance drug synthesis May 24th, 2016

Nanoscale Trojan horses treat inflammation May 24th, 2016

Discoveries

Simple attraction: Researchers control protein release from nanoparticles without encapsulation: U of T Engineering discovery stands to improve reliability and fabrication process for treatments to conditions such as spinal cord damage and stroke May 28th, 2016

Scientists illuminate a hidden regulator in gene transcription: New super-resolution technique visualizes important role of short-lived enzyme clusters May 27th, 2016

Doubling down on Schrödinger's cat May 27th, 2016

Finding a new formula for concrete: Researchers look to bones and shells as blueprints for stronger, more durable concrete May 26th, 2016

Announcements

Simple attraction: Researchers control protein release from nanoparticles without encapsulation: U of T Engineering discovery stands to improve reliability and fabrication process for treatments to conditions such as spinal cord damage and stroke May 28th, 2016

Scientists illuminate a hidden regulator in gene transcription: New super-resolution technique visualizes important role of short-lived enzyme clusters May 27th, 2016

Doubling down on Schrödinger's cat May 27th, 2016

Deep Space Industries and SFL selected to provide satellites for HawkEye 360’s Pathfinder mission: The privately-funded space-based global wireless signal monitoring system will be developed by Deep Space Industries and UTIAS Space Flight Laboratory May 26th, 2016

Safety-Nanoparticles/Risk management

PETA science group publishes a review on pulmonary effects of nanomaterials: Archives of Toxicology publishes a review of scientific studies on fibrotic potential of nanomaterials May 26th, 2016

Common nanoparticle has subtle effects on oxidative stress genes May 11th, 2016

Non-animal approach to predict impact of nanomaterials on human lung published Archives of Toxicology publishes workshop recommendations May 2nd, 2016

Scientists propose non-animal tools for assessing the toxicity of nanomaterials: Particle and Fibre Toxicology publishes recommendations from expert group meeting April 26th, 2016

Quantum Dots/Rods

Supercrystals with new architecture can enhance drug synthesis May 24th, 2016

ORNL demonstrates large-scale technique to produce quantum dots May 21st, 2016

First single-enzyme method to produce quantum dots revealed: Biological manufacturing process, pioneered by three Lehigh University engineers, produces equivalent quantum dots to those made chemically--but in a much greener, cheaper way May 9th, 2016

Superfast light source made from artificial atom April 28th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic