Nanotechnology Now







Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Quick and Safe Quantum Dots

Researchers at Rutgers University have developed a method to generate an entire library of safe quantum dots quickly and efficiently.
Researchers at Rutgers University have developed a method to generate an entire library of safe quantum dots quickly and efficiently.

Abstract:
Tracking and viewing molecular interactions inside a cell with great detail is invaluable for understanding how organisms operate and to the future of medicine. Quantum dots (QDs), semiconductor crystals on the nanoscale with confined electron excitations, have almost all the right properties for this task. They have high absorption constants, are small enough to sneak inside cells, and can be tailored to release at different wavelengths. Additionally, they can carry therapeutic proteins on their coating. However, they are toxic. The current leading QDs are composed of hazardous elements like cadmium, selenium, and tellurium. Recently, advances have made more biocompatible crystals out of safer materials, such as zinc, silver, and indium. Yet, these crystals have long reaction times and are difficult to customize and produce en masse.

Quick and Safe Quantum Dots

Germany | Posted on August 10th, 2012

Researchers at Rutgers University have developed a method to generate an entire library of safe QDs quickly and efficiently. They used the molecular structure ZnS-AgInS2 (ZAIS), a version of the previous non-toxic crystals. They placed a powdery bulk chemical precursor into a vial and blasted it with 20 kHz of ultrasound for five minutes. The sound waves broke up the powder into QDs with a uniform size of about 12nm. The crystals also had a property unique among other types of dots. Instead of size controlling the color of emission, the ratio of elements in the compound did. The more zinc or silver added to the precursor, the more blue-shifted the resulting QDs were. By tuning the stoichiometry, the researchers synthesized QD samples across the entire visible spectrum.

They then tested to see how the dots impacted a biological environment. The ZAIS dots were compared against the standard and toxic cadmium selenide (CdSe) QDs. Both were placed with brain tumor cell, marrow stem cell, and mouse fibroblast samples to see how each fared in their presence. In all trials, the ZAIS QDs had negligible toxic effects, even when in high concentration or oxidized by four hours of UV exposure. In contrast, the CdSe QDs failed the tests miserably, practically killing off half the sample at high concentration. Moreover, the ZAIS dots were extremely stable, lasting for two months in storage without losing any of their photoluminescence.

Lastly, the researchers tested how well these QDs could carry out a multifunctional purpose. They mutated a sample of the tumor neurons to create a fluorescent protein that made them glow green. They then attached the silencing RNA that targets and destroys the protein-creating gene to the QD surface. The researchers watched the dots enter the cells, as they were easy to track due to their glow. After three days, about 80% of the green fluorescence disappeared.

These results open up the possibility of safely using QDs in humans. Furthermore, different colored crystals can simultaneously carry out an array of therapeutic and imaging functions, depending on their surface polymers. The researchers believe that their ultrasound technique can be used to rapidly create and characterize the toxicity of other nanoparticles as well.

####

For more information, please click here

Copyright © Wiley-VCH Materials Science Journals

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Link to the original paper on Wiley Online Library:

Related News Press

News and information

‘Oxford Instruments Young Nanoscientist India Award 2015’ to Prof. Arindam Ghosh April 20th, 2015

Nondestructive 3-D Imaging of Biological Cells with Sound April 20th, 2015

Advances in molecular electronics: Lights on -- molecule on: Researchers from Dresden and Konstanz succeed in light-controlled molecule switching April 20th, 2015

Imaging

Better battery imaging paves way for renewable energy future April 20th, 2015

Nondestructive 3-D Imaging of Biological Cells with Sound April 20th, 2015

Nanomedicine

‘Oxford Instruments Young Nanoscientist India Award 2015’ to Prof. Arindam Ghosh April 20th, 2015

Iranian Female Professor Awarded UNESCO Medal in Nanoscience April 20th, 2015

Happily ever after: Scientists arrange protein-nanoparticle marriage: New biotech method could lead to development of HIV vaccine, targeted cancer treatment April 20th, 2015

Optical resonance-based biosensors designed for medical applications April 18th, 2015

Discoveries

Ethylene Nanosorbent, a Novel Product to Decrease Agricultural Waste April 20th, 2015

Quantum model reveals surface structure of water: National Physical Laboratory, IBM and Edinburgh University have used a new quantum model to reveal the molecular structure of water's liquid surface April 20th, 2015

Happily ever after: Scientists arrange protein-nanoparticle marriage: New biotech method could lead to development of HIV vaccine, targeted cancer treatment April 20th, 2015

Advances in molecular electronics: Lights on -- molecule on: Researchers from Dresden and Konstanz succeed in light-controlled molecule switching April 20th, 2015

Announcements

Happily ever after: Scientists arrange protein-nanoparticle marriage: New biotech method could lead to development of HIV vaccine, targeted cancer treatment April 20th, 2015

Nondestructive 3-D Imaging of Biological Cells with Sound April 20th, 2015

Advances in molecular electronics: Lights on -- molecule on: Researchers from Dresden and Konstanz succeed in light-controlled molecule switching April 20th, 2015

Yale-NUS, NUS and UT Austin researchers establish theoretical framework for graphene physics: Making strides towards using graphene to create new electronic devices April 20th, 2015

Safety-Nanoparticles/Risk management

MIPT researchers put safety of magic anti-cancer bullet to test April 6th, 2015

NNI Publishes Workshop Report Assessing the Status of EHS Risk Science: Report examines progress three years after the release of the 2011 NNI EHS Research Strategy March 23rd, 2015

Are current water treatment methods sufficient to remove harmful engineered nanoparticle? March 10th, 2015

More study needed to clarify impact of cellulose nanocrystals on health: Few studies explore toxicity of cellulose nanocrystals March 10th, 2015

Quantum Dots/Rods

QD Vision Expands Product Line with Two-Millimeter Color LCD Display Optic: Color IQ™ Optic Enables Full-Color Gamut for Ultra-Thin Displays and All-in-One Computers April 16th, 2015

Promising future of quantum dots explored in conference: ‘20 Years of Quantum Dots at Los Alamos’ runs April 12-16 April 13th, 2015

Next important step toward quantum computer: Scientists at the University of Bonn have succeeded in linking 2 different quantum systems March 30th, 2015

Tiny bio-robot is a germ suited-up with graphene quantum dots March 24th, 2015

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project