Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Wireless power for the price of a penny

Abstract:
The newspaper-style printing of electronic equipment has led to a cost-effective device that could change the way we interact with everyday objects.

Wireless power for the price of a penny

London, UK | Posted on August 9th, 2012

For a price of just one penny per unit the device, known as a rectenna, which is presented today, Friday 10 August, in IOP Publishing's journal Nanotechnology, can be placed onto objects such as price tags, logos and signage so that we can read product information on our smartphones with one simple swipe.

This type of technology, which is known as near-field communication (NFC), has already been implemented to allow fast money transactions; however, this new device could lead the way to large-scale adoption at a low cost.

The rectenna, created by researchers from Sunchon National University and Paru Printed Electronics Research Institute, could be implemented onto everyday objects so that they can harness the power given off by the smartphone's radio waves and send information back to it via printed digital circuits.

It is called a rectenna as it is a combination of an antenna and a rectifier - a device that converts alternating current (AC) into direct current (DC). The rectenna was printed onto plastic foils in large batches using a roll-to-roll process at a rate of 8m min-1. Five different electronic inks were used and each rectenna had a length of around 1300 mm.

The researchers state that the rectenna can harness power directly from radio waves given off by a mobile phone, converting AC into DC. The rectenna created in this study could provide at least 0.3 W of power from an alternating current which had a frequency of 13.56 MHz.

NFC technology is very similar to QR codes, whereby users take a photo of a square-shaped bar code on a poster or advert using their smartphone. The difference with NFC is that items will contain a small computer chip or digital information, operated by DC power.

"What is great about this technique is that we can also print the digital information onto the rectenna, meaning that everything you need for wireless communication is in one place," said co-author of the study Gyoujin Cho.

"Our advantage over current technology is lower cost, since we can produce a roll-to-roll printing process with high throughput in an environmentally friendly manner. Furthermore, we can integrate many extra functions without huge extra cost in the printing process.

"The application of NFC technology with the smartphone will be limitless in the near future. The medical, automotive, military and aerospace industries will benefit greatly."

From Friday 10 August, this paper can be downloaded from:

iopscience.iop.org/0957-4484/23/34/344006

####

About Institute of Physics (IOP)
The Institute of Physics is a leading scientific society promoting physics and bringing physicists together for the benefit of all.

It has a worldwide membership of around 40 000 comprising physicists from all sectors, as well as those with an interest in physics. It works to advance physics research, application and education; and engages with policy makers and the public to develop awareness and understanding of physics. Its publishing company, IOP Publishing, is a world leader in professional scientific communications. Go to www.iop.org

About IOP Publishing

IOP Publishing provides publications through which leading-edge scientific research is distributed worldwide. IOP Publishing is central to the Institute of Physics (IOP), a not-for-profit society. Any financial surplus earned by IOP Publishing goes to support science through the activities of IOP. Beyond our traditional journals programme, we make high-value scientific information easily accessible through an ever-evolving portfolio of community websites, magazines, conference proceedings and a multitude of electronic services. Focused on making the most of new technologies, we’re continually improving our electronic interfaces to make it easier for researchers to find exactly what they need, when they need it, in the format that suits them best. Go to ioppublishing.org/

For more information, please click here

Contacts:
Michael Bishop
+44 (0) 1179 301032

Copyright © AlphaGalileo

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Researchers develop artificial building blocks of life March 8th, 2024

How surface roughness influences the adhesion of soft materials: Research team discovers universal mechanism that leads to adhesion hysteresis in soft materials March 8th, 2024

Two-dimensional bimetallic selenium-containing metal-organic frameworks and their calcinated derivatives as electrocatalysts for overall water splitting March 8th, 2024

Curcumin nanoemulsion is tested for treatment of intestinal inflammation: A formulation developed by Brazilian researchers proved effective in tests involving mice March 8th, 2024

Announcements

What heat can tell us about battery chemistry: using the Peltier effect to study lithium-ion cells March 8th, 2024

Curcumin nanoemulsion is tested for treatment of intestinal inflammation: A formulation developed by Brazilian researchers proved effective in tests involving mice March 8th, 2024

The Access to Advanced Health Institute receives up to $12.7 million to develop novel nanoalum adjuvant formulation for better protection against tuberculosis and pandemic influenza March 8th, 2024

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

Printing/Lithography/Inkjet/Inks/Bio-printing/Dyes

Presenting: Ultrasound-based printing of 3D materials—potentially inside the body December 8th, 2023

Simple ballpoint pen can write custom LEDs August 11th, 2023

Disposable electronics on a simple sheet of paper October 7th, 2022

Newly developed technique to improve quantum dots color conversion performance: Researchers created perovskite quantum dot microarrays to achieve better results in full-color light-emitting devices and expand potential applications June 10th, 2022

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project