Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > NIST focuses on testing standards to support lab on a chip commercialization

This is a microfluidic lab on a chip device sitting on a polystyrene dish. Stainless steel needles inserted into the apparatus serve as access points for fluids into small channels within it.

Credit: Gregory A. Cooksey/NIST
This is a microfluidic lab on a chip device sitting on a polystyrene dish. Stainless steel needles inserted into the apparatus serve as access points for fluids into small channels within it.

Credit: Gregory A. Cooksey/NIST

Abstract:
Lab on a chip (LOC) devices—microchip-size systems that can prepare and analyze tiny fluid samples with volumes ranging from a few microliters (millionth of a liter) to sub-nanoliters (less than a billionth of a liter)—are envisioned to one day revolutionize how laboratory tasks such as diagnosing diseases and investigating forensic evidence are performed. However, a recent paper* from the National Institute of Standards and Technology (NIST) argues that before LOC technology can be fully commercialized, testing standards need to be developed and implemented.

NIST focuses on testing standards to support lab on a chip commercialization

Gaithersburg, MD | Posted on August 9th, 2012

"A testing standard," explains NIST physical scientist and paper author Samuel Stavis, "defines the procedures used to determine if a lab on a chip device, and the materials from which it is made, conform to specifications." Standardized testing and measurement methods, Stavis writes, will enable MEMS (microelectromechanical systems) LOC manufacturers at all stages of production—from processing of raw materials to final rollout of products—to accurately determine important physical characteristics of LOC devices such as dimensions, electrical surface properties, and fluid flow rates and temperatures.

To make his case for testing standards, Stavis focuses on autofluorescence, the background fluorescent glow of an LOC device that can interfere with the analysis of a sample. Stavis states that multiple factors must be considered in the development of a testing standard for autofluorescence, including: the materials used in the device, the measurement methods used to test the device and how the measurements are interpreted. "All of these factors must be rigorously controlled for, or appropriately excluded from, a meaningful measurement of autofluorescence," Stavis writes.

Quality control during LOC device manufacturing, Stavis says, may require different tests of autofluorescence throughout the process. "There may be one measure of autofluorescence from the block of plastic that is the base material for a chip, another once the block has been fashioned into the substrate in which the functional components are embedded, and yet another as the final device is completed," Stavis says. "To manufacture lab on a chip devices with reliably low autofluorescence, accurate measurements may be needed at each stage."

Stavis also emphasizes that it is important not to confuse testing standards with product standards, and to understand how the former facilitates the latter. "A product standard specifies the technical requirements for a lab on a chip device to be rated as top quality," he says. "A testing standard is needed to measure those specifications, as well as to make fair comparisons between competing products."

* Stavis, S.M. A glowing future for lab on a chip testing standards. Lab on a Chip (2012), DOI: 10.1039/c2lc40511c

####

For more information, please click here

Contacts:
Michael E. Newman

301-975-3025

Copyright © National Institute of Standards and Technology (NIST)

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Laboratories

Chiral magnetic effect generates quantum current: Separating left- and right-handed particles in a semi-metallic material produces anomalously high conductivity February 8th, 2016

Metal oxide sandwiches: New option to manipulate properties of interfaces February 8th, 2016

News and information

Metal oxide sandwiches: New option to manipulate properties of interfaces February 8th, 2016

Canadian physicists discover new properties of superconductivity February 8th, 2016

Leading bugs to the death chamber: A kinder face of cholesterol February 8th, 2016

Microfluidics/Nanofluidics

Scientists have shown how to make a low-cost yet high precision glass nanoengraving: In a joint study, scientists have developed a mechanism of laser deposition of patterns on glass with a resolution of 1000 times lower than the width of a human hair January 21st, 2016

Nanoworld 'snow blowers' carve straight channels in semiconductor surfaces: NIST, IBM researchers report important addition to toolkit of 'self-assembly' methods eyed for making useful devices December 28th, 2015

New device uses carbon nanotubes to snag molecules: Nanotube “forest” in a microfluidic channel may help detect rare proteins and viruses December 21st, 2015

A cheap, disposable device for diagnosing disease December 2nd, 2015

Lab-on-a-chip

Nanoworld 'snow blowers' carve straight channels in semiconductor surfaces: NIST, IBM researchers report important addition to toolkit of 'self-assembly' methods eyed for making useful devices December 28th, 2015

Govt.-Legislation/Regulation/Funding/Policy

Chiral magnetic effect generates quantum current: Separating left- and right-handed particles in a semi-metallic material produces anomalously high conductivity February 8th, 2016

Canadian physicists discover new properties of superconductivity February 8th, 2016

Leading bugs to the death chamber: A kinder face of cholesterol February 8th, 2016

From allergens to anodes: Pollen derived battery electrodes February 8th, 2016

Chip Technology

Metal oxide sandwiches: New option to manipulate properties of interfaces February 8th, 2016

The iron stepping stones to better wearable tech without semiconductors February 8th, 2016

Organic crystals allow creating flexible electronic devices: The researchers from the Faculty of Physics of the Moscow State University have grown organic crystals that allow creating flexible electronic devices February 5th, 2016

Scientists guide gold nanoparticles to form 'diamond' superlattices: DNA scaffolds cage and coax nanoparticles into position to form crystalline arrangements that mimic the atomic structure of diamond February 4th, 2016

Announcements

Scientists create laser-activated superconductor February 8th, 2016

Canadian physicists discover new properties of superconductivity February 8th, 2016

Leading bugs to the death chamber: A kinder face of cholesterol February 8th, 2016

From allergens to anodes: Pollen derived battery electrodes February 8th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic