Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > New Phenomenon in Nanodisk Magnetic Vortices Berkeley Lab Researchers Take a Mesocale Look at Magnetic Vortex Formations

MTXM images of in-plane (a) and out-of-plane (b) magnetic components in an array of permalloy nanodisks. In-plane magnetic rotation is shown by white arrow (a). Core polarization is marked by black (up) and white (down) spots. Image (c) shows the complete vortex configuration of each nanodisk in the array. (Images courtesy of Im and Fischer)
MTXM images of in-plane (a) and out-of-plane (b) magnetic components in an array of permalloy nanodisks. In-plane magnetic rotation is shown by white arrow (a). Core polarization is marked by black (up) and white (down) spots. Image (c) shows the complete vortex configuration of each nanodisk in the array.

(Images courtesy of Im and Fischer)

Abstract:
The phenomenon in ferromagnetic nanodisks of magnetic vortices - hurricanes of magnetism only a few atoms across - has generated intense interest in the high-tech community because of the potential application of these vortices in non-volatile Random Access Memory (RAM) data storage systems. New findings from scientists at the U.S. Department of Energy (DOE)'s Lawrence Berkeley National Laboratory (Berkeley Lab) indicate that the road to magnetic vortex RAM might be more difficult to navigate than previously supposed, but there might be unexpected rewards as well.

New Phenomenon in Nanodisk Magnetic Vortices Berkeley Lab Researchers Take a Mesocale Look at Magnetic Vortex Formations

Berkeley, CA | Posted on August 9th, 2012

In an experiment made possible by the unique X-ray beams at Berkeley Lab's Advanced Light Source (ALS), a team of researchers led by Peter Fischer and Mi-Young Im of the Center for X-Ray Optics (CXRO), in collaboration with scientists in Japan, discovered that contrary to what was previously believed, the formation of magnetic vortices in ferromagnetic nanodisks is an asymmetric phenomenon. It is possible that this breaking of symmetry would lead to failure in a data storage device during its initialization process.

"Our experimental demonstration that the vortex state in a single magnetic nanodisk experiences symmetry breaking during formation means that for data storage purposes, there would probably need to be a lengthy verification process to correct for errors," Im says. "On the plus side, non-symmetric behavior creates a biasing effect that could be applied to a sensor or a logic device."

"Our study is also a nice example of mesoscale science, which brings the nanoscience of the last decade to the next level," Fischer says. "Mesoscale phenomena encompass complexity and functionality over various length scales."

Im and Fischer describe this study in a paper published in the journal Nature Communications. The paper is titled "Symmetry breaking in the formation of magnetic vortex states in a permalloy nanodisk." Co-authoring this paper were Keisuke Yamada, Tomonori Sato, Shinya Kasai, Yoshinobu Nakatani and Teruo Ono.

Magnetic vortex states are generated in ferromagnetic nanodisks because the spin of electrons, which gives rise to magnetic moments, must follow the shape of the disk to ensure closure of magnetic flux lines. This results in the curling of the in-plane magnetization flux lines. At the center of these curling flux lines is a needlelike core, an "eye-of-the-hurricane" that points either up or down with respect to the surface plane of the nanodisk.

"The magnetization of the ferromagnetic nanodisk therefore has two components, the up or down polarity of the core and the chirality (rotation) of the in-plane magnetization, which can be either clockwise or counter-clockwise," Im says. "It has been proposed that these four independent orientations can be used to store binary data in novel non-volatile storage devices."

"The assumption has been that magnetic vortex states would exhibit a perfect symmetry required for vortex-based data-storage devices because the energy states of the four orientations were equivalent, meaning four logical values per unit," Fischer says. "However, we show that if you analyze a sufficiently large ensemble of nanodisks, this is not the case. Our results demonstrate how mesoscale behavior can be significantly different from nanoscale behavior."

The key to the discovery of magnetic vortex symmetry-breaking was the research team's ability to simultaneously observe both chirality and polarity in a large array of nanodisks. Previous studies focused on either the chirality or polarity in a single disk. This simultaneous observation was accomplished using the XM-1 x-ray microscope at ALS beamline 6.1.2. XM-1 provides full-field magnetic transmission soft X-ray microscopy with spatial resolution down to 20 nanometers, thanks in part to the high quality X-ray optics provided by CXRO researchers.

"Magnetic transmission soft X-ray microscopy offers high spatial and temporal resolution imaging with element specific magnetic contrast, making it an ideal method for studying nanoscale spin dynamics, such as vortex core dynamics," Im says. "XM-1 provides a large field of view and therefore very short exposure times per disk."

Im, Fischer and their colleagues fashioned nanodisks from permalloy, a nickel and iron alloy whose magnetic properties have been fully characterized. Using electron-beam lithography they patterned large arrays of disks, each with a radius of 500 nanometers and a thickness of 100 nanometers. The arrays were deposited on silicon-nitride membranes to allow for sufficient transmission of soft X-rays and exposed in XM-1 for a few seconds. In their paper, the authors conclude that the observed symmetry breaking most likely results from a combination of intrinsic and extrinsic factors. The intrinsic factor is believed to be an antisymmetric coupling between the spins of two electrons called the Dzyaloshinskii-Moriya interaction. Extrinsic factors include defects along the edges of the nanodisks and rough nanodisk surfaces.

"Our finding is certainly a new physical phenomenon in magnetic vortices, which has not been explored so far," says Im. "The statistical significance of our experimental work and our rigorous 3D micromagnetic simulation for the generation process of vortex state provides important new information for the less known physics in the magnetization process of nanodisks."

"We've also shown that deterministic behavior and functionality on the mesoscale cannot always be extrapolated from even a complete understanding of nanoscale behavior," Fischer says. "In other words, understanding a single LEGO brick might not be enough to build a large and complex structure."

Im is the corresponding author of the Nature Communications paper. Co-authors Yamada and Ono are with Kyoto University, co-authors Sato and Nakatani are with the University of Electro-Communications at Chofu, and co-author Kasai is with Japan's and National Institute for Materials Science.

This research was supported by the DOE Office of Science.

####

About Berkeley Lab
Lawrence Berkeley National Laboratory (Berkeley Lab) addresses the world’s most urgent scientific challenges by advancing sustainable energy, protecting human health, creating new materials, and revealing the origin and fate of the universe. Founded in 1931, Berkeley Lab’s scientific expertise has been recognized with 13 Nobel prizes. The University of California manages Berkeley Lab for the U.S. Department of Energy’s Office of Science. For more, visit www.lbl.gov.

DOE’s Office of Science is the single largest supporter of basic research in the physical sciences in the United States, and is working to address some of the most pressing challenges of our time. For more information, please visit the Office of Science website at science.energy.gov/.

For more information, please click here

Contacts:
Lynn Yarris
(510) 486-5375

Copyright © Berkeley Lab

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

For more about the research of Peter Fischer and Mi-Young Im go here:

For more about the Center for X-ray Optics go here:

For more about the Advanced Light Source go here:

Related News Press

News and information

Tough foam from tiny sheets: Rice University lab uses atom-thick materials to make ultralight foam July 29th, 2014

Zenosense, Inc. July 29th, 2014

Optimum inertial design for self-propulsion: A new study investigates the effects of small but finite inertia on the propulsion of micro and nano-scale swimming machines July 29th, 2014

A new way to make microstructured surfaces: Method can produce strong, lightweight materials with specific surface properties July 29th, 2014

Imaging

WITec to host the 11th Confocal Raman Imaging Symposium from September 29th - October 1st in Ulm, Germany July 28th, 2014

FEI adds Phase Plate Technology and Titan Halo TEM to its Structural Biology Product Portfolio: New solutions provide the high-quality imaging and contrast necessary to analyze the 3D structure of molecules and molecular complexes July 28th, 2014

Bruker Announces Acquisition of High-Speed, 3D Super-Resolution Fluorescence Microscopy Company Vutara July 28th, 2014

New imaging agent provides better picture of the gut July 25th, 2014

Bruker Awarded Fourth PeakForce Tapping Patent: AFM Mode Uniquely Combines Highest Resolution Imaging and Material Property Mapping July 22nd, 2014

Laboratories

Stanford team achieves 'holy grail' of battery design: A stable lithium anode - Engineers use carbon nanospheres to protect lithium from the reactive and expansive problems that have restricted its use as an anode July 27th, 2014

NIST shows ultrasonically propelled nanorods spin dizzyingly fast July 22nd, 2014

Govt.-Legislation/Regulation/Funding/Policy

Tough foam from tiny sheets: Rice University lab uses atom-thick materials to make ultralight foam July 29th, 2014

A new way to make microstructured surfaces: Method can produce strong, lightweight materials with specific surface properties July 29th, 2014

Seeing is bead-lieving: Rice University scientists create model 'bead-spring' chains with tunable properties July 28th, 2014

Stanford team achieves 'holy grail' of battery design: A stable lithium anode - Engineers use carbon nanospheres to protect lithium from the reactive and expansive problems that have restricted its use as an anode July 27th, 2014

Chip Technology

A*STAR and industry form S$200M semiconductor R&D July 25th, 2014

A Crystal Wedding in the Nanocosmos July 23rd, 2014

Nanometrics Announces Upcoming Investor Events July 22nd, 2014

Penn Study: Understanding Graphene’s Electrical Properties on an Atomic Level July 22nd, 2014

Memory Technology

Rice's silicon oxide memories catch manufacturers' eye: Use of porous silicon oxide reduces forming voltage, improves manufacturability July 10th, 2014

University of Illinois study advances limits for ultrafast nano-devices July 10th, 2014

Leti to Present Technological Platforms Targeting Industry’s Needs for the Future at Semicon West Workshop: Presentation at STS Session to Focus on Leti Advanced Lithography Programs for 1x Nodes and on Silicon Photonics at TechXPot June 25th, 2014

6TH CEA-LETI WORKSHOP ON INNOVATIVE MEMORY TECHNOLOGIES includes invited talks by Infineon, IBM, Schlumberger, Thales, Cisco and STMicroelectronics: June 24 Event to Explore NVM Application Horizons from Automotive to Oil & Gas: Responses from Innovative Technologies & Design June 12th, 2014

Discoveries

Tough foam from tiny sheets: Rice University lab uses atom-thick materials to make ultralight foam July 29th, 2014

Zenosense, Inc. July 29th, 2014

Optimum inertial design for self-propulsion: A new study investigates the effects of small but finite inertia on the propulsion of micro and nano-scale swimming machines July 29th, 2014

A new way to make microstructured surfaces: Method can produce strong, lightweight materials with specific surface properties July 29th, 2014

Announcements

Tough foam from tiny sheets: Rice University lab uses atom-thick materials to make ultralight foam July 29th, 2014

Zenosense, Inc. July 29th, 2014

Optimum inertial design for self-propulsion: A new study investigates the effects of small but finite inertia on the propulsion of micro and nano-scale swimming machines July 29th, 2014

A new way to make microstructured surfaces: Method can produce strong, lightweight materials with specific surface properties July 29th, 2014

Tools

WITec to host the 11th Confocal Raman Imaging Symposium from September 29th - October 1st in Ulm, Germany July 28th, 2014

FEI adds Phase Plate Technology and Titan Halo TEM to its Structural Biology Product Portfolio: New solutions provide the high-quality imaging and contrast necessary to analyze the 3D structure of molecules and molecular complexes July 28th, 2014

Bruker Announces Acquisition of High-Speed, 3D Super-Resolution Fluorescence Microscopy Company Vutara July 28th, 2014

Malvern Instruments completes acquisition of MicroCal and announces purchase of Archimedes product from Affinity Biosensors July 25th, 2014

Research partnerships

Breakthrough laser experiment reveals liquid-like motion of atoms in an ultra-cold cluster: University of Leicester research team unlocks insights into creation of new nano-materials July 25th, 2014

A*STAR and industry form S$200M semiconductor R&D July 25th, 2014

A Crystal Wedding in the Nanocosmos July 23rd, 2014

Penn Study: Understanding Graphene’s Electrical Properties on an Atomic Level July 22nd, 2014

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE