Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > New Phenomenon in Nanodisk Magnetic Vortices Berkeley Lab Researchers Take a Mesocale Look at Magnetic Vortex Formations

MTXM images of in-plane (a) and out-of-plane (b) magnetic components in an array of permalloy nanodisks. In-plane magnetic rotation is shown by white arrow (a). Core polarization is marked by black (up) and white (down) spots. Image (c) shows the complete vortex configuration of each nanodisk in the array. (Images courtesy of Im and Fischer)
MTXM images of in-plane (a) and out-of-plane (b) magnetic components in an array of permalloy nanodisks. In-plane magnetic rotation is shown by white arrow (a). Core polarization is marked by black (up) and white (down) spots. Image (c) shows the complete vortex configuration of each nanodisk in the array.

(Images courtesy of Im and Fischer)

Abstract:
The phenomenon in ferromagnetic nanodisks of magnetic vortices - hurricanes of magnetism only a few atoms across - has generated intense interest in the high-tech community because of the potential application of these vortices in non-volatile Random Access Memory (RAM) data storage systems. New findings from scientists at the U.S. Department of Energy (DOE)'s Lawrence Berkeley National Laboratory (Berkeley Lab) indicate that the road to magnetic vortex RAM might be more difficult to navigate than previously supposed, but there might be unexpected rewards as well.

New Phenomenon in Nanodisk Magnetic Vortices Berkeley Lab Researchers Take a Mesocale Look at Magnetic Vortex Formations

Berkeley, CA | Posted on August 9th, 2012

In an experiment made possible by the unique X-ray beams at Berkeley Lab's Advanced Light Source (ALS), a team of researchers led by Peter Fischer and Mi-Young Im of the Center for X-Ray Optics (CXRO), in collaboration with scientists in Japan, discovered that contrary to what was previously believed, the formation of magnetic vortices in ferromagnetic nanodisks is an asymmetric phenomenon. It is possible that this breaking of symmetry would lead to failure in a data storage device during its initialization process.

"Our experimental demonstration that the vortex state in a single magnetic nanodisk experiences symmetry breaking during formation means that for data storage purposes, there would probably need to be a lengthy verification process to correct for errors," Im says. "On the plus side, non-symmetric behavior creates a biasing effect that could be applied to a sensor or a logic device."

"Our study is also a nice example of mesoscale science, which brings the nanoscience of the last decade to the next level," Fischer says. "Mesoscale phenomena encompass complexity and functionality over various length scales."

Im and Fischer describe this study in a paper published in the journal Nature Communications. The paper is titled "Symmetry breaking in the formation of magnetic vortex states in a permalloy nanodisk." Co-authoring this paper were Keisuke Yamada, Tomonori Sato, Shinya Kasai, Yoshinobu Nakatani and Teruo Ono.

Magnetic vortex states are generated in ferromagnetic nanodisks because the spin of electrons, which gives rise to magnetic moments, must follow the shape of the disk to ensure closure of magnetic flux lines. This results in the curling of the in-plane magnetization flux lines. At the center of these curling flux lines is a needlelike core, an "eye-of-the-hurricane" that points either up or down with respect to the surface plane of the nanodisk.

"The magnetization of the ferromagnetic nanodisk therefore has two components, the up or down polarity of the core and the chirality (rotation) of the in-plane magnetization, which can be either clockwise or counter-clockwise," Im says. "It has been proposed that these four independent orientations can be used to store binary data in novel non-volatile storage devices."

"The assumption has been that magnetic vortex states would exhibit a perfect symmetry required for vortex-based data-storage devices because the energy states of the four orientations were equivalent, meaning four logical values per unit," Fischer says. "However, we show that if you analyze a sufficiently large ensemble of nanodisks, this is not the case. Our results demonstrate how mesoscale behavior can be significantly different from nanoscale behavior."

The key to the discovery of magnetic vortex symmetry-breaking was the research team's ability to simultaneously observe both chirality and polarity in a large array of nanodisks. Previous studies focused on either the chirality or polarity in a single disk. This simultaneous observation was accomplished using the XM-1 x-ray microscope at ALS beamline 6.1.2. XM-1 provides full-field magnetic transmission soft X-ray microscopy with spatial resolution down to 20 nanometers, thanks in part to the high quality X-ray optics provided by CXRO researchers.

"Magnetic transmission soft X-ray microscopy offers high spatial and temporal resolution imaging with element specific magnetic contrast, making it an ideal method for studying nanoscale spin dynamics, such as vortex core dynamics," Im says. "XM-1 provides a large field of view and therefore very short exposure times per disk."

Im, Fischer and their colleagues fashioned nanodisks from permalloy, a nickel and iron alloy whose magnetic properties have been fully characterized. Using electron-beam lithography they patterned large arrays of disks, each with a radius of 500 nanometers and a thickness of 100 nanometers. The arrays were deposited on silicon-nitride membranes to allow for sufficient transmission of soft X-rays and exposed in XM-1 for a few seconds. In their paper, the authors conclude that the observed symmetry breaking most likely results from a combination of intrinsic and extrinsic factors. The intrinsic factor is believed to be an antisymmetric coupling between the spins of two electrons called the Dzyaloshinskii-Moriya interaction. Extrinsic factors include defects along the edges of the nanodisks and rough nanodisk surfaces.

"Our finding is certainly a new physical phenomenon in magnetic vortices, which has not been explored so far," says Im. "The statistical significance of our experimental work and our rigorous 3D micromagnetic simulation for the generation process of vortex state provides important new information for the less known physics in the magnetization process of nanodisks."

"We've also shown that deterministic behavior and functionality on the mesoscale cannot always be extrapolated from even a complete understanding of nanoscale behavior," Fischer says. "In other words, understanding a single LEGO brick might not be enough to build a large and complex structure."

Im is the corresponding author of the Nature Communications paper. Co-authors Yamada and Ono are with Kyoto University, co-authors Sato and Nakatani are with the University of Electro-Communications at Chofu, and co-author Kasai is with Japan's and National Institute for Materials Science.

This research was supported by the DOE Office of Science.

####

About Berkeley Lab
Lawrence Berkeley National Laboratory (Berkeley Lab) addresses the world’s most urgent scientific challenges by advancing sustainable energy, protecting human health, creating new materials, and revealing the origin and fate of the universe. Founded in 1931, Berkeley Lab’s scientific expertise has been recognized with 13 Nobel prizes. The University of California manages Berkeley Lab for the U.S. Department of Energy’s Office of Science. For more, visit www.lbl.gov.

DOE’s Office of Science is the single largest supporter of basic research in the physical sciences in the United States, and is working to address some of the most pressing challenges of our time. For more information, please visit the Office of Science website at science.energy.gov/.

For more information, please click here

Contacts:
Lynn Yarris
(510) 486-5375

Copyright © Berkeley Lab

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

For more about the research of Peter Fischer and Mi-Young Im go here:

For more about the Center for X-ray Optics go here:

For more about the Advanced Light Source go here:

Related News Press

News and information

Fast, efficient sperm tails inspire nanobiotechnology December 5th, 2016

Journal Nanotechnology Progress International (JONPI) Volume 6, issue 2 coming out soon! December 5th, 2016

Infrared instrumentation leader secures exclusive use of Vantablack coating December 5th, 2016

Construction of practical quantum computers radically simplified: Scientists invent ground-breaking new method that puts quantum computers within reach December 5th, 2016

Imaging

Deep insights from surface reactions: Researchers use Stampede supercomputer to study new chemical sensing methods, desalination and bacterial energy production December 2nd, 2016

Controlled electron pulses November 30th, 2016

Novel silicon etching technique crafts 3-D gradient refractive index micro-optics November 28th, 2016

Scientists shrink electron gun to matchbox size: Terahertz technology has the potential to enable new applications November 25th, 2016

Laboratories

Working under pressure: Diamond micro-anvils with huge pressures will create new materials October 19th, 2016

Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge October 15th, 2016

Scientists Find Static "Stripes" of Electrical Charge in Copper-Oxide Superconductor: Fixed arrangement of charges coexists with material's ability to conduct electricity without resistance October 14th, 2016

Tomoyasu Mani Wins 2016 Blavatnik Regional Award for Young Scientists: Award recognizes his work at Brookhaven Lab to understand the physical processes occurring in organic materials used to harness solar energy October 13th, 2016

Govt.-Legislation/Regulation/Funding/Policy

Construction of practical quantum computers radically simplified: Scientists invent ground-breaking new method that puts quantum computers within reach December 5th, 2016

Shape matters when light meets atom: Mapping the interaction of a single atom with a single photon may inform design of quantum devices December 4th, 2016

Research Study: MetaSOLTM Shatters Solar Panel Efficiency Forecasts with Innovative New Coating: Coating Provides 1.2 Percent Absolute Enhancement to Triple Junction Solar Cells December 2nd, 2016

Deep insights from surface reactions: Researchers use Stampede supercomputer to study new chemical sensing methods, desalination and bacterial energy production December 2nd, 2016

Chip Technology

Construction of practical quantum computers radically simplified: Scientists invent ground-breaking new method that puts quantum computers within reach December 5th, 2016

Shape matters when light meets atom: Mapping the interaction of a single atom with a single photon may inform design of quantum devices December 4th, 2016

Quantum obstacle course changes material from superconductor to insulator December 1st, 2016

Bumpy surfaces, graphene beat the heat in devices: Rice University theory shows way to enhance heat sinks in future microelectronics November 29th, 2016

Memory Technology

New technology of ultrahigh density optical storage researched at Kazan University: The ever-growing demand for storage devices stimulates scientists to find new ways of improving the performance of existing technologies November 30th, 2016

A Tiny Machine: UCSB electrical and computer engineers design an infinitesimal computing device October 28th, 2016

How nanoscience will improve our health and lives in the coming years: Targeted medicine deliveries and increased energy efficiency are just two of many ways October 26th, 2016

Making the switch, this time with an insulator: Colorado State University physicists, joining the fundamental pursuit of using electron spins to store and manipulate information, have demonstrated a new approach to doing so, which could prove useful in the application of low-powe September 2nd, 2016

Discoveries

Fast, efficient sperm tails inspire nanobiotechnology December 5th, 2016

Construction of practical quantum computers radically simplified: Scientists invent ground-breaking new method that puts quantum computers within reach December 5th, 2016

Shape matters when light meets atom: Mapping the interaction of a single atom with a single photon may inform design of quantum devices December 4th, 2016

UTSA study describes new minimally invasive device to treat cancer and other illnesses: Medicine diffusion capsule could locally treat multiple ailments and diseases over several weeks December 3rd, 2016

Announcements

Fast, efficient sperm tails inspire nanobiotechnology December 5th, 2016

Journal Nanotechnology Progress International (JONPI) Volume 6, issue 2 coming out soon! December 5th, 2016

Infrared instrumentation leader secures exclusive use of Vantablack coating December 5th, 2016

Construction of practical quantum computers radically simplified: Scientists invent ground-breaking new method that puts quantum computers within reach December 5th, 2016

Tools

Deep insights from surface reactions: Researchers use Stampede supercomputer to study new chemical sensing methods, desalination and bacterial energy production December 2nd, 2016

Controlled electron pulses November 30th, 2016

Scientists shrink electron gun to matchbox size: Terahertz technology has the potential to enable new applications November 25th, 2016

News from Quorum: The Agricultural Research Service of the USDA uses a Quorum Cryo-SEM preparation system for the study of mites, ticks and other soft bodied organisms November 22nd, 2016

Research partnerships

Deep insights from surface reactions: Researchers use Stampede supercomputer to study new chemical sensing methods, desalination and bacterial energy production December 2nd, 2016

Quantum obstacle course changes material from superconductor to insulator December 1st, 2016

Novel silicon etching technique crafts 3-D gradient refractive index micro-optics November 28th, 2016

Single photon converter -- a key component of quantum internet November 28th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project